首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical investigation has been performed to analyze forced convective heat transfer to supercritical water in horizontal rectangular ducts. Convective heat transfer near the critical region in the rectangular ducts is strongly influenced by large variations of thermodynamic and transport properties of supercritical fluid with gravity force, especially close to pseudocritical temperature. Fluid flow and heat transfer characteristics such as velocity, temperature, and local heat transfer coefficient with water properties distribution in the ducts are presented. Flow accelerates along the horizontal ducts because of decreased water density from heat transfer at the duct walls. Center of large flow recirculation in the duct section locates near the middle of vertical surface and additional secondary recirculation in clockwise direction appears with the increase of duct height. Local wall temperature severely varies along the inner surface of the duct section and its variation depends on aspect ratio of the duct. The heat transfer coefficient distributions along the ducts for various aspect ratios are compared with the proximity effect to the critical pressure.  相似文献   

2.
Numerical analysis has been carried out to investigate transient forced convective heat transfer to water near the critical region in developing flow through a vertical tube. With large variations of thermophysical properties such as density, specific heat, viscosity, and thermal conductivity near the thermodynamic critical point, heat transfer in the tube is strongly coupled with fluid flow. Buoyancy force parameter has also large variation with fluid temperature and pressure in the tube. Time dependent characteristics of fluid velocity, temperature, and heat transfer coefficient with water properties are presented and analyzed. Transient Nusselt and Stanton number distributions along the tube are also compared for various pressures in the tube. Because of heat transfer from the wall transition behavior from liquid-like phase to gas-like phase of heat transfer coefficient occurs when the fluid passes through pseudocritical temperature region in the tube. Turbulent viscosity ratio also has steep variation near the pseudocritical temperature close to the wall.  相似文献   

3.
In this paper the convective heat transfer and friction factor of the nanofluids in a circular tube with constant wall temperature under turbulent flow conditions were investigated experimentally. Al2O3 nanoparticles with diameters of 40 nm dispersed in distilled water with volume concentrations of 0.1–2 vol.% were used as the test fluid. All physical properties of the Al2O3–water nanofluids needed to calculate the pressure drop and the convective heat transfer coefficient were measured. The results show that the heat transfer coefficient of nanofluid is higher than that of the base fluid and increased with increasing the particle concentrations. Moreover, the Reynolds number has a little effect on heat transfer enhancement. The experimental data were compared with traditional convective heat transfer and viscous pressure drop correlations for fully developed turbulent flow. It was found that if the measured thermal conductivities and viscosities of the nanofluids were used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations perfectly predict the convective heat transfer and viscous pressure drop in tubes.  相似文献   

4.
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids and these numbers strongly influence the convective heat transfer coefficient. The pressure loss and the required pumping power for a given amount of heat transfer depend on the Reynolds number of flow. The thermophysical properties vary with temperature and volumetric concentration of nanofluids. Therefore, a comprehensive analysis has been performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration and temperature. Two metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO) and one nonmetallic oxide silicon dioxide (SiO2), dispersed in an ethylene glycol and water mixture (60:40 by weight) as the base fluid have been studied.  相似文献   

5.
Because of the rapid properties variation of fluid under supercritical pressure, there is a violent secondary flow in a heated pipe, which will certainly complicate the heat transfer of fluid in a pipe under supercritical pressure. In this paper, a numerical study is conducted for the laminar developing mixed convective heat transfer of water under supercritical pressure. The velocity field and temperature field are given, and the influence of different parameters on flow and heat transfer is investigated in detail. The results show that secondary flow has a great influence on velocity and temperature distributions and thus affects the friction factor and the Nusselt number remarkably. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(8): 608–619, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20079  相似文献   

6.
Abstract

The strong variation of thermophysical properties of working fluids operating in the vicinity of the critical point makes this thermodynamic domain attractive to several energy applications. Therefore, herein a two-dimensional numerical method is used to investigate the effect of local thermophysical property variations on the local and overall thermal performance of internal convective heat transfer in a pipe in 324 operational conditions. Focusing on carbon dioxide and water as heat transfer fluids, an association of the variation of key thermophysical properties with thermohydraulic performance metrics is proposed, namely: (a) the local and (b) mean convective heat transfer coefficient and (c) the maximal temperature obtained at the tube wall. It is shown that there is an optimal combination of parameters such as mass flow rate, operating pressure, wall heat flux, and inlet temperature that, when properly selected, allow for a minimal maximal wall temperature. As expected, optimality is strongly associated with the Widom—or pseudo critical—line that extends from the critical point. Interestingly, however, contrary to what is observed in constant-property fluids, high heat transfer coefficient or minimal maximum temperature lead to different sets of optimal operating conditions. This difference is explained by how thermophysical properties vary locally along heat exchangers, which significantly affects overall heat transfer.  相似文献   

7.
Shuang-Ying Wu  You-Rong Li  Yan Chen  Lan Xiao 《Energy》2007,32(12):2385-2395
The exergy transfer characteristics of fluid flow and heat transfer inside a circular duct under fully developed laminar and turbulent forced convection are presented. Temperature is kept constant at the duct wall. The exergy transfer Nusselt number is put forward and the analytical expressions for exergy transfer Nusselt number are obtained as functions of heat transfer Nusselt number, Reynolds number, Prandtl number, etc. The variations of the local and mean convective exergy transfer coefficient, non-dimensional exergy flux, exergy transfer rate, etc. with operating parameters are presented graphically. By reference to a smooth duct and taking air as working fluid, a numerical analysis of the influence of the Reynolds number and non-dimensional cross-sectional position on exergy transfer characteristics has been conducted. The results show that the process parameters and configuration in the fluid flow and heat transfer inside a duct should be properly selected so that the forced convection process could have the best exergy utilization. In addition, the results corresponding to the exergy transfer and energy transfer are compared.  相似文献   

8.
This work addresses the effect of temperature on the thermophysical properties (i.e., density, viscosity, thermal conductivity, and specific heat capacity) of alumina–water nanofluid over a wide temperature range (25°C–75°C). Low concentrations (0–0.5% v/v) of alumina nanoparticles (40 nm size) in distilled water were used in this study. The pressure drop and the effective heat transfer coefficient of nanofluids were also estimated for different power inputs and at different flow rates corresponding to Reynolds numbers in the range of 1500–6000. The trends in variation of thermophysical properties of nanofluids with temperature were similar to that of water, owing to their low concentrations. However, the density, viscosity, and thermal conductivity of nanofluids increased, while the specific heat capacity decreased with increasing the nanoparticle concentration. The convective heat transfer coefficient of the nanofluid and the pressure drop along the test section increased with increasing the particle concentration and flow rate of nanofluid. Results showed that the heat transfer coefficient increases, while the pressure drop decreases slightly with increasing the power input. This is because of the fact that increasing power input to heater increases the bulk mean temperature of nanofluids, resulting in a decreased viscosity. The prepared nanofluids were found to be more effective under turbulent flow than in transition flow.  相似文献   

9.
对超临界压力下RP-3航空煤油在内截面宽为4mm、高为4mm、固体壁面厚为1mm、加热段长度为500mm的水平矩形冷却通道内的对流传热特性进行了数值模拟研究。分析了通道内速度场的分布规律,讨论了热流密度、压力、进口温度对传热的影响。计算结果表明:当主流温度处于拟临界温度附近时,流体物性参数变化剧烈,导致传热系数降低,传热出现恶化。在超临界压力下,较低的热流密度、增大压力、降低进口流体温度或提高质量流速均有利于改善冷却通道内的传热性能。  相似文献   

10.
Abstract

Two methods for monitoring the thermal stresses in pressure components of thermal power plants are presented. In the first method, the transient temperature distribution in the pressure component is determined by measuring the transient wall temperature at several points located on the outer insulated surface of the component. The transient temperature distribution in the pressure component, including the temperature of the inner surface is determined from the solution of the inverse heat conduction problem (IHCP). In the first method, there is no need to know the temperature of the fluid and the heat transfer coefficient. In the second method, thermal stresses in a pressure component with a complicated shape are computed using the finite element method (FEM) based on experimentally estimated fluid temperature and known heat transfer coefficient. A new thermometer with good dynamic properties has been developed and applied in practice, providing a much more accurate measurement of the temperature of the flowing fluid in comparison with standard thermometers. The heat transfer coefficient on the inner surface of a pressure element can be determined from the empirical relationships available in the literature. A numerical-experimental method of determination of the transient heat transfer coefficient based on the solution of the 3D-inverse heat conduction problem has also been proposed. The heat transfer coefficient on the internal surface of a pressure element is determined based on an experimentally determined local transient temperature distribution on the external surface of the element or the basis of wall temperature measurement at six points located near the internal surface if fluid temperature changes are fast. Examples of determining thermal and pressure stresses in the thick-walled horizontal superheater header and the horizontal header of the steam cooler in a power boiler with the use of real measurement data are presented.  相似文献   

11.
A numerical investigation has been carried out to analyze the effect of wall proximity of a triangular cylinder on the heat transfer and flow field in a horizontal channel. Computations have been carried out for Reynolds numbers (based on triangle width) range of 100–450 and gap widths (a/h) 0.5, 0.75 and 1. Results are presented in the form of instantaneous contours of temperature, vorticity, with some characteristics of fluid flow and heat transfer; such as time-averaged and instantaneous local Nusselt number, skin friction coefficient along bottom channel's wall, and drag coefficient. Results show that approaching triangular cylinder in the wall, removes vortex shedding and subsequently the heat transfer rate decreases at low Reynolds number. By decreasing the vortex shedding, drag coefficient decrease as triangular cylinder approaches the wall of the channel. The variation of vortex formation has a more significant suppression effect on the skin friction coefficient than the Nusselt number.  相似文献   

12.
In this study, forced convection flows of nanofluids consisting of water with TiO2 and Al2O3 nanoparticles in a horizontal tube with constant wall temperature are investigated numerically. The horizontal test section is modeled and solved using a CFD program. Palm et al.'s correlations are used to determine the nanofluid properties. A single-phase model having two-dimensional equations is employed with either constant or temperature dependent properties to study the hydrodynamics and thermal behaviors of the nanofluid flow. The numerical investigation is performed for a constant particle size of Al2O3 as a case study after the validation of its model by means of the experimental data of Duangthongsuk and Wongwises with TiO2 nanoparticles. The velocity and temperature vectors are presented in the entrance and fully developed region. The variations of the fluid temperature, local heat transfer coefficient and pressure drop along tube length are shown in the paper. Effects of nanoparticles concentration and Reynolds number on the wall shear stress, Nusselt number, heat transfer coefficient and pressure drop are presented. Numerical results show the heat transfer enhancement due to presence of the nanoparticles in the fluid in accordance with the results of the experimental study used for the validation process of the numerical model.  相似文献   

13.
In this paper, fluid flow and convective heat transfer of a ferrofluid (water and 4 vol% Fe3O4) in sintered Aluminum porous channel, which is subjected to a nonuniform transverse magnetic field have been studied. The numerical simulations supposed an ordinary cubic and staggered arrangement organized by uniformly sized particles with a small contact area for the porous media and constant heat flux at the surface of the microchannel. A wire, in which the electric current passes creates a nonuniform magnetic field, which is perpendicular to the flow direction. To do this simulation, the control volume technique and the two‐phase mixture model have been employed. The results show that the obtained local heat transfer coefficient on the channel surface increased with increasing mass flow rate and decreased slightly along the axial direction. Moreover, exerting the above‐mentioned magnetic field increases the Nusselt number that enhances the heat transfer rate while it has no effect on the pressure drop along the channel.  相似文献   

14.
This article reports an experimental study on the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 0.2 vol.% TiO2 nanoparticles. The heat transfer coefficient and friction factor of the TiO2–water nanofluid flowing in a horizontal double-tube counter flow heat exchanger under turbulent flow conditions are investigated. The Degussa P25 TiO2 nanoparticles of about 21 nm diameter are used in the present study. The results show that the convective heat transfer coefficient of nanofluid is slightly higher than that of the base liquid by about 6–11%. The heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate of the hot water and nanofluid, and increases with a decrease in the nanofluid temperature, and the temperature of the heating fluid has no significant effect on the heat transfer coefficient of the nanofluid. It is also seen that the Gnielinski equation failed to predict the heat transfer coefficient of the nanofluid. Finally, the use of the nanofluid has a little penalty in pressure drop.  相似文献   

15.
INTRODUCTIONHeattransferenllancen1enttechniquesplayaveryimportantroleintllermalcontroltechnologies1lsedwithnlicroelectronicchips,powerfullasermirrors,aerospacecraft,thermalnuclearfusion,etc.Itiswidelyrecognizedthattl1eheattransfercanbein-creasedbyil1creasingthesurfaceareaincontactwiththecoolant.TuckermanandPease[1,2]pointedoutthatforlaminarflowinconfinedchannels,theheattransfercoefficientisinverselyproportionaltothewidthofthechannelsincethelimitingNusseltnum-berisconsta11t.Theybuiltawate…  相似文献   

16.
An analysis is performed to study natural convective heat transfer in a vertical rectangular duct filled with a nanofluid. One of the vertical walls of the duct is cooled by a constant temperature, while the other wall is heated by a constant temperature. The other two sides of the duct are thermally insulated. The transport equations for a Newtonian fluid are solved numerically with a finite volume method of second‐order accuracy. The influence of pertinent parameters such as Grashof number, Brinkman number, aspect ratio and solid volume fraction on the heat transfer characteristics of natural convection is studied. Results for the volumetric flow rate and skin friction for Copper and Diamond nanoparticles are also drawn. The Nusselt number for various types of nanoparticle such as silver, copper, diamond and titanium oxide are also tabulated. The results indicate that inclusion of nanoparticles into pure water improves its heat transfer performance; however, there is an optimum solid volume fraction which maximizes the heat transfer rate.  相似文献   

17.
Abstract

This work presents buoyancy-driven mixed convective flow and heat transfer phenomena of an isothermally heated horizontal elliptic cylinder in vertically upward unbounded flow of power-law type non-Newtonian nanofluids using ANSYS Fluent. The governing continuity, momentum and energy equations for the shear-thinning power-law nanofluids along with suitable boundary conditions are simultaneously solved within the limitations of Boussinesq approximation. The semi implicit method for pressure-linked equations algorithm along with the quadratic upstream interpolation for convective kinematics scheme for discretizing the convective terms in both momentum and energy equations are adopted. The ranges of parameters considered for this study are: volume fraction of nanoparticles, 0.005–0.045; aspect ratio of elliptic cylinder, 0.5–2.5; and Richardson number, 0–40; and a representative Reynolds number of 20. The streamline patterns, surface pressure coefficient distributions, total drag coefficients, isotherm contours, and Nusselt numbers are presented for better understanding of heat transfer and flow phenomena around elliptic cylinders. Briefly results indicate that the total drag coefficient is found to increase with the increasing Richardson number whereas it decreases with the increasing volume fraction of nanoparticles. The average Nusselt numbers are found to increase with increasing Richardson number and increasing volume fraction of nanoparticles.  相似文献   

18.
Nanofluids comprised of silicon dioxide (SiO2) nanoparticles suspended in a 60:40 (% by weight) ethylene glycol and water (EG/water) mixture were investigated for their heat transfer and fluid dynamic performance. First, the rheological properties of different volume percents of SiO2 nanofluids were investigated at varying temperatures. The effect of particle diameter (20 nm, 50 nm, 100 nm) on the viscosity of the fluid was investigated. Subsequent experiments were performed to investigate the convective heat transfer enhancement of nanofluids in the turbulent regime by using the viscosity values measured. The experimental system was first tested with EG/water mixture to establish agreement with the Dittus-Boelter equation for Nusselt number and with Blasius equation for friction factor. The increase in heat transfer coefficient due to nanofluids for various volume concentrations has been presented. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Typical percentage increases of heat transfer coefficient and pressure loss at fixed Reynolds number are presented.  相似文献   

19.
In recent years, porous or solid insert has been used in a duct for enhancing heat transfer in high temperature thermal equipment, where both convective and radiative heat transfer play a major role. In the present work, the study of heat transfer enhancement is carried out for flow through a square duct with a porous or a solid insert. Most of the analyses are carried out for a porous insert. The hydrodynamically developing flow field is solved using the Navier–Stokes equation and the Darcy–Brinkman model is considered for solving the flow in the porous region. The radiative heat transfer is included in the analysis by coupling the radiative transfer equation to the energy equation. The fluid considered is CO2 with temperature dependent thermophysical properties. Both the fluid and the porous medium are considered as gray participating medium. The increase in heat transfer is analyzed by comparing the bulk mean temperature, Nusselt number, and radiative heat flux for different porous size and orientation, Reyonlds number, and Darcy number.  相似文献   

20.
Numerical simulations for fluid flow and heat transfer in triangular ducts are carried out. Flow is considered to be laminar, hydrodynamically, and thermally developing. Heat transfer by both forced and natural convection is taken into account. Simulations are carried out for constant wall temperature cases which are at a higher temperature than the inlet temperature of the fluid. The effect of Rayleigh number on bulk mean temperature and Nusselt number is studied. Isotherm and secondary velocity profile formed because of natural convection is shown at different locations with varying Rayleigh number. The effect of the apex angle of the triangular duct on Nusselt number and bulk mean temperature is studied. Results are compared with the cases of mixed convective heat transfer in a square duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号