首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three novel bithiazole‐containing polymers were synthesized from 2,2′‐diamino‐4, 4′‐bithiazole (DABT) condensed with bismaleimide, bis(methyloxycarbonyl ethyl)tin dichloride (BETD), and 4,4′‐diphenylmethane diisocyanate (DPDI), respectively. A new series of polymeric complexes were prepared from Fe2+ and the three polymers. These polymers and their complexes were characterized through FTIR, 1H‐NMR, and related techniques. The chemical compositions of the complexes were determined by XPS. The presence of the exchange interaction between the unpaired electrons was investigated by ESR spectroscopy. The magnetic behavior of these complexes was measured as a function of the magnetic field strength (0–40 kOe) at 5 K and as a function of temperature (5–300 K) at a magnetic field strength of 30 kOe. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1353–1359, 2001  相似文献   

2.
A novel polymer (poly[2,2'‐(4,4'‐bithiazolylene)][N‐(2‐ethylhexyl)‐3,6‐carbazylene] (PBTCA) was first synthesized from 2,2′‐diamino‐4,4′‐bithiazole and N‐(2‐ethylhexyl)‐3,6‐diformylcarbazole. The structure of the polymer was determined with IR and 1H‐NMR spectroscopy. The PBTCA–Nd3+ complex was prepared via the mixing of neodymium trichloride hexahydrate and PBTCA in dimethyl sulfoxide under a nitrogen atmosphere. The magnetic behaviors of the Nd3+ complex of a poly(Schiff base) were measured as a function of the magnetic field strength (0–50 kOe) at 4 K and as a function of the temperature (4–300 K). The results show that PBTCA–Nd3+ is a ferromagnet when the temperature is below 15 K, and above that, it is a diamagnet. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 443–446, 2006  相似文献   

3.
N‐2‐Thiazolylmethacrylamide (NTMA) was polymerized by a radical route to obtain the polymer in good yields. The complexes of PolyNTMA with three rare earth ions Nd(III), Pr(III), and Sm(III) were prepared for the first time. FTIR and 1H NMR were applied to characterize these materials. The magnetic behavior of PolyNTMA–metal complexes was examined as a function of applied magnetic field at 4 K and as a function of temperature (4–300 K) at an applied magnetic field of 30 kOe. It was found that Pr(III) complex exhibits an antiferromagnetic property, while Nd(III) and Sm(III) complexes exhibit a special magnetic property different from the typical magnet. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1289–1293, 2006  相似文献   

4.
Two novel copolymers containing bithiazole rings and ethylene oxide on the skeleton (PPOBTz and PNOBTz) were synthesized via Schiff reaction and Ullmann reaction, respectively. The copolymers were characterized by FTIR, 1H NMR. Their polymeric complexes with Cu2+ and Nd2+ were prepared. The magnetic behavior of these polymeric complexes was measured as a function of magnetic field strength (0-60 kOe) at 4 K and as a function of temperature (4-300 K) at a magnetic field strength of 30 kOe, indicating that they all exhibited features of soft ferromagnet.  相似文献   

5.
The aim of this study was to prepare magnetic beads that could be used for the removal of heavy‐metal ions from synthetic solutions. Magnetic poly(ethylene glycol dimethacrylate–1‐vinyl‐1,2,4‐triazole) [m‐poly(EGDMA–VTAZ)] beads were produced by suspension polymerization in the presence of a magnetite Fe3O4 nanopowder. The specific surface area of the m‐poly(EGDMA–VTAZ) beads was 74.8 m2/g with a diameter range of 150–200 μm, and the swelling ratio was 84%. The average Fe3O4 content of the resulting m‐poly(EGDMA–VTAZ) beads was 14.8%. The maximum binding capacities of the m‐poly(EGDMA–VTAZ) beads from aquous solution were 284.3 mg/g for Hg2+, 193.8 mg/g for Pb2+, 151.5 mg/g for Cu2+, 128.1 mg/g for Cd2+, and 99.4 mg/g for Zn2+. The affinity order on a mass basis was Hg2+ > Pb2+ > Cu2+ > Cd2+> Zn2+. The binding capacities from synthetic waste water were 178.1 mg/g for Hg2+, 132.4 mg/g for Pb2+, 83.5 mg/g for Cu2+, 54.1 mg/g for Cd2+, and 32.4 mg/g for Zn2+. The magnetic beads could be regenerated (up to ca. 97%) by a treatment with 0.1M HNO3. These features make m‐poly(EGDMA–VTAZ) beads potential supports for heavy‐metal removal under a magnetic field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
π-Conjugated polymers consisting of 1,10-phenanthroline units and crown ether subunits (Poly-1, Poly-2, and Poly-3) were prepared by dehalogenation polycondensation of the corresponding dibromo monomers using a zero-valent nickel complex as a condensing agent. They were characterized by elemental analysis, 1H NMR and UV–Vis spectroscopies, and cyclic voltammetry (CV). They were partly soluble in CHCl3, and the number average molecular weight of the soluble part of Poly-2, which had 15-crown-5 subunits, was estimated to be 5300. The polymers exhibited UV–Vis peaks at approximately λmax = 360 nm, which was reasonable. Complexation with [Ru(bpy)2]2+ and alkaline metal ions made the polymer soluble in organic solvents. The complexation of [Ru(bpy)2]2+ to the 1,10-phenanthroline unit proceeded quantitatively, and the [Ru(bpy)2]2+ complexes exhibited CV curves characteristic of [Ru(N-N)3]2+ complexes.  相似文献   

7.
Poly[6‐(2,6‐bis(1′‐methylbenzimidazolyl)pyridin‐4‐yloxy)hexyl acrylate] (PBIP) and its terbium complex (PBIP‐Tb3+) were prepared and characterized by 1H NMR and FT‐IR. The optical properties of PBIP‐Tb3+ complex were characterized by UV–vis spectroscopy and fluorescence spectroscopy. Both polymer PBIP and PBIP‐Tb3+ complex show good thermal stability. The magnetic property of PBIP‐Tb3+ complex was measured as a function of temperature (5–300 K) at 30 kOe and as a function of an external field (?50 to 50 kOe) at 5 K. Magnetic hysteresis loop of PBIP‐Tb3+ complex at 5 K shows typical “S” shape and PBIP‐Tb3+ complex is soft ferromagnetic. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44249.  相似文献   

8.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
1,10‐Phenanthroline‐functionalized polyaryletherketone (PPEK) was synthesized by the amidation reaction of 5‐amino‐1,10‐phenanthroline with polyaryletherketone containing pendant acyl chloride groups. Subsequently, a series of novel rare earth coordination polymers (with rare earths Eu3+, Tb3+, Sm3+ and Dy3+) were prepared, using PPEK as macromolecular ligand and the small 1,10‐phenanthroline (Phen) molecule as synergistic ligand. Their structures were characterized using Fourier transform infrared spectroscopy, elemental analysis and X‐ray diffraction, which confirmed that both PPEK and Phen participated in the coordination reaction with the rare earth ions, and that the rare earth ions could disperse homogeneously in the polymer matrix. The rare earth coordination polymers were soluble in polar solvents such as N,N‐dimethylformamide, N,N‐dimethylacetamide and N‐methylpyrrolidone, and could be easily cast into transparent tough thin films. Fluorescence measurements indicated that all the coordination polymers exhibited the intense characteristic fluorescence of the corresponding rare earth ions under ultraviolet excitation, showing their application potential in optical display devices. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
The paper presents several new polymer complexes based on poly(2‐hydroxyethyl) methacrylate (P‐HEMA) and transition metals including Y3+, Eu3+, Tb3+ and Dy3+. Red‐, green‐, blue‐ and yellow‐emitting polymer complexes with remarkable photoluminescent (PL) properties, high degree of transparency and excellent processability both in bulk and in thin film were prepared and investigated. In the case of the prepared P‐HEMA–Eu3+ and P‐HEMA–Tb3+ polymer complexes, divinylbenzene was used as a crosslinker resulting a markedly enhanced PL emission, most probably due to the presence of the benzene rings which improve the efficiency of the energy transfer to the cation emissive centres. The prepared polymer complexes were structurally investigated through Fourier transform infrared and X‐ray photoelectron spectroscopies while atomic force microscopy was used to study the morphology of the prepared thin films. Steady‐state fluorescence spectroscopy and absolute PL quantum yield were used for the investigation of the luminescent properties. The impressive PL emission and the convenience of preparation in bulk or thin films could be important arguments for a wide area of applications ranging from photonic conversion materials in optoelectronic devices (light‐emitting diodes, flat‐panel displays) to full‐colour watermarks on special‐purpose papers or PL inks and coatings. © 2019 Society of Chemical Industry  相似文献   

11.
Thermosensitive and water‐soluble copolymers were prepared through the copolymerization of acryloyloxypropyl phosphinic acid (APPA) and N‐isopropyl acrylamide (NIPAAm). The thermosensitivity of the copolymers and copolymer/metal complexes was studied. The APPA–NIPAAm copolymers with less than 11 mol % APPA moiety had a lower critical solution temperature (LCST) of approximately 45°C, but the APPA–NIPAAm copolymers with greater than 21 mol % APPA moiety had no LCST from 25 to 55°C. The APPA–NIPAAm copolymers had a higher adsorption capacity for Sm3+, Nd3+, and La3+ than for Cu2+, Ni2+ and Co2+. The APPA–NIPAAm (10:90) copolymer/metal (Sm3+, Nd3+, or La3+) complexes became water‐insoluble above 45°C at pH 6–7, but the APPA–NIPAAm (10:90) copolymer/metal (Cu2+,Ni2+, or Co2+) complexes were water‐soluble from 25 to 55°C at pH 6–7. The temperature at which both the APPA–NIPAAm copolymers and the copolymer/metal complexes became water‐insoluble increased as the pH values of the solutions increased. The APPA–NIPAAm copolymers were able to separate metal ions from their mixed solutions when the temperature of the solutions was changed; this was followed by centrifugation of the copolymer/metal complexes after the copolymers were added to the metal solutions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 116–125, 2004  相似文献   

12.
Ferromagnetic polyaniline (PANI) with conductivity was synthesized with peroxydisulfate as an oxidant and horseradish peroxidase as a catalyst in an N′‐a‐hydroxythylpiperazine‐N′‐ethanesulfanic acid buffer solution containing aniline, HCl, and NiCl2·6H2O in an applied magnetic field. The result of an electron paramagnetic resonance spectrum indicated that there were unpaired electrons in the resulting product, the spin density of which was 7.60 × 1019 spins/g. The curve of the magnetization versus the magnetic field showed that PANI had soft ferromagnetic behavior at about 300 K. The saturation magnetization and coercive force of PANI were 0.033 emu/g and 5 Oe, respectively. Ultraviolet–visible and Fourier transform infrared spectra indicated that there was interaction between Ni2+ and PANI chains but the structure of the backbone chains of PANI synthesized in the presence of a magnetic field hardly changed compared with that of PANI synthesized without NiCl2·6H2O. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
This work presents the synthesis and characterization of a new water‐soluble oligophenol derivative, 4‐(2‐hydroxybenzylideneamino)benzenesulfanilic acid (OSAL‐SA) and its metal complexes. The chemical structure of the water‐soluble polymer was characterized by nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies and thermogravimetric analyses (TGAs). Pb(II), Cu(II), Co(II) complexes of the polymer were also synthesized in methanol. Characterizations of water insoluble polymer‐metal complexes were performed by FTIR, flame atomic absorption spectroscopy, and TGA. The conductivity measurements of OSAL‐SA and polymer–metal complexes were carried out by the four‐probe technique. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
New polymers were used as catalysts for the removal of dissolved oxygen in boiler water. These polymers, based upon hydroquinone‐quinone redox system, were prepared by polymerization of methyl 4‐(2,5‐dimethoxybenzyl)cinnamate and copolymerization of this monomer with 4‐(4′‐vinylphenethyl)‐1,10‐phenanthroline. The resulting product was used to synthesize polymers containing transition metal ions. Nuclear magnetic resonance, infrared spectroscopy, and elemental analysis were achieved to characterize monomers and/or electron‐transfer polymers. These polymers were used for the removal of oxygen from water. It was shown that the oxygen content was reduced to less than 0.1 mg L?1 in ~ 70 s. Based on the obtained results, the redox capacity of two polymers were determined. It was established that the poly‐4‐(2,5‐dihydroxybenzyl)cinnamic acid reached a redox capacity of 69.7 mg of O2 per gram of polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A complex of Eu3+, benzoate (BA), acrylate (AA), and 1,10‐phenanthroline (Phen) was synthesized in this work. The structure of Eu(BA)2(AA)(Phen) was characterized with elemental analysis, FTIR, and UV spectroscopy. Copolymers containing rare earth complex were prepared via the copolymerization of Eu3+(BA)2(AA)(Phen) with styrene. Semitransparent, luminescent polymer materials with high fluorescent intensity were obtained. The as‐synthesized materials were further characterized by means of IR and UV spectra, which indicated that they were copolymers instead of blends. The fluorescence spectra of the copolymers revealed the intense UV absorption characteristics of the rare earth complex present in the materials, as long as only a small portion of the complex was incorporated into the copolymers. Moreover, thermal analysis showed that the copolymer had excellent heat stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1506–1510, 2006  相似文献   

16.
FeII, FeIII and mixed‐valence FeII–III chlorides were reacted with poly[N,N′‐bis(dimethylsilyl)ethylenedi‐ amine], [? Si(CH3)2NHCH2CH2NH? ]n, to form the corresponding Fe‐polycarbosilazane macromolecular complexes. The average chain–chain spacing in these materials was estimated from X‐ray diffraction data and found to be 6.94, 7.29, 7.30 and 7.45 Å in metal‐free and FeII? , FeIII? and FeII–III‐containing polycarbosilazanes, respectively. This demonstrates that FeII, FeIII and FeII–III chlorides are encapsulated between the polycarbosilazane chains. The chain–chain expansions in the divalent FeII and trivalent FeIII chloride macromolecular complexes are comparable, but less than that in the FeII–III chloride analog, which suggests that different chain–chain packings exist in the mixed‐valence macromolecular complex. The magnetic properties of the resulting complexes were investigated by measuring the magnetization in magnetic fields up to 8 kOe and in the temperature range from liquid nitrogen temperature to room temperature. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
A novel bithiazole oligomer (PCBT) was synthesized from C60 and the diazo salt of 2,2′-diamino-4,4′-bithiazole (DABT). Its ferro-complex (PCBT-Fe2+) was prepared from PCBT and FeSO4 in DMSO solution under a purified nitrogen atmosphere. The magnetic behavior of PCBT and PCBT-Fe2+ was measured as a function of magnetic field strength (0-60 kOe) at 5 K and as a function of temperature (5-300 K) at a magnetic field strength of 30 kOe. PCBT-Fe2+ complex exhibits a hysteresis cycle at 5 K, the observed coercive field (HC) and remnant magnetization (Mr) are 690 Oe and 0.12 emu/g, respectively. The results show that PCBT is an anti-ferromagnet and its Fe2+-complex is a soft ferromagnet.  相似文献   

18.
Square planar Au(III) complexes of 2,2′-dipyridylamine (A1), di(2-pyridyl)ketone (A2), 2-(4-chlorophenyl)-1H-imidazo[4,5-f] [1,10] phenanthroline (A3) and 2-(4-bromophenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (A4) of type [Au(An)Cl2].Cl were synthesized and characterized using conductivity measurement, C,H,N elemental analysis, FT-IR, LC–MS, 1H and 13C NMR spectroscopy. The compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV–vis. absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis–Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the noncatalyzed DNA cleavage.  相似文献   

19.
This research focuses on the syntheses of polyaniline with poly(styrenesulfonic acid) and their electrochemical behavior, including absorbance behavior and electrochemical response time of polyaniline‐poly(styrenesulfonic acid) [PANI–PSSA]. The complexes PANI–PSSA were prepared by electrochemical polymerization of monomer (aniline) with PSSA, using indium‐tin oxide (ITO) as working electrode in 1M HCl solution. Polyaniline (PANI), poly(o‐phenetidine)–poly(styrenesulfonic acid) [POP–PSSA], and poly(2‐ethylaniline)–poly(styrenesulfonic acid) [P2E‐PSSA] also were prepared by electrochemical polymerization and to be the reference samples. The products were characterized by IR, VIS, EPR, water solubility, elemental analysis, conductivity, SEM, and TEM. IR spectral studies shows that the structure of PANI–PSSA complexes is similar to that of polyaniline. EPR and visible spectra indicate the formation of polarons. The morphology of the blend were investigated by SEM and TEM, which indicate the conducting component and electrically conductive property of the polymer complexes. Elemental analysis results show that PANI–PSSA has a nitrogen to sulfur ratio (N/S) of 38%, lower than that for POP–PSSA (52%) and P2E–PSSA (41%). Conductivity of the complexes are around 10?2 S/cm, solubility of PANI–PSSA in water is 3.1 g/L. The UV‐Vis. absorbance spectra of the hybrid organic/inorganic complementary electro‐chromic device (ECD), comprising a polyaniline–poly(styrenesulfonic acid) [PANI–PSSA] complexes and tungsten oxide (WO3) thin film coupled in combination with a polymer electrolyte poly(2‐acrylamido‐2‐methyl‐propane‐sulfonic acid) [PAMPSA]. PANI–PSSA microstructure surface images have been studied by AFM. By applying a potential of ~3.0 V across the two external ITO contacts, we are able to modulate the light absorption also in the UV‐Vis region (200–900 nm) wavelength region. For example, the absorption changes from 1.20 to 0.6 at 720 nm. The complexes PANI–PSSA, POP–PSSA, and P2E–PSSA were prepared by electrochemical polymerization of monomer (aniline, o‐phenetidine, or 2‐ethylaniline) with poly(styrenesulfonic acid), using ITO as working electrode in 1M HCl solution, respectively. UV‐Vis spectra measurements shows the evidences for the dopped polyaniline system to be a highly electrochemical response time, recorded at the temperature 298 K, and the results were further analyzed on the basis of the color‐ discolor model, which is a typical of protontation systems. Under the reaction time (3 s) and monomer (aniline, o‐phenetidine, 2‐ethylaniline) concentration (0.6M) with PSSA (0.15M), the best electrochemical color and discolor time of the PANI–PSSA is slower than POP–PSSA complexes (125/125 ms; thickness, 3.00 μm) and P2E–PSSA complexes. Under the same thickness (10 μm), the best electrochemical color and discolor time of the PANI–PSSA complexes is 1500/750 ms, that is much slower than P2E–PSSA complexes (750/500 ms) and POP–PSSA complexes (500/250 ms). In film growing rate, the PANI–PSSA complexes (0.54 μm/s) are slower than P2E–PSSA complexes (0.79 μm/s) and POP–PSSA complexes (1.00 μm/s), it can be attributed to the substituted polyaniline that presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. The EPR spectra of the samples were recorded both at 298 K and 77 K, and were further analyzed on the basis of the polaron–bipolaron model. The narrower line‐width of the substituted polyaniline complexes arises due to polarons; i.e., it is proposed that charge transport take place through both polarons and bipolarons, compared to their salts can be attributed to the lower degree of structural disorder, the oxygen absorption on the polymeric molecular complexes, and due to presence of electro‐donating (? OC2H5 or ? C2H5) group present in aniline monomer. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4023–4044, 2006  相似文献   

20.
The present study is the first report on poultry feathers as a novel, inexpensive substrate for the production of a thermo‐ and detergent stable keratinase from a marine actinobacterium belonging to the genus Actinoalloteichus. Medium composition and culture conditions for the keratinase production by Actinoalloteichus sp. MA‐32 were optimized using two statistical methods: Plackett–Burman design was applied to find the key ingredients and conditions for the best yield of enzyme production and central composite design used to optimize the concentration of the five significant variables: whole chicken feather, soy flour, MgSO4·7H2O, KH2PO4 and NaCl. The medium optimization resulted in a 19.30‐fold increase with a 31.99 % yield with a specific activity of 3842.57 U mg?1 and the molecular weight was estimated as 66 kDa. The enzyme was optimally active at pH 8–10 and temperature 50–60 °C and it was most stable up to pH 12 and 10–14 % of NaCl concentration. The enzyme activity was reduced when treated with Hg2+, Pb2+, Tween‐80, 1,10‐phenanthroline and EDTA and stimulated by Fe2+, Mg2+, Cu2+, Ca2+, Ni2+, Mn2+, SDS, ethoxylated (9.5EO) octylphenol, DMSO, sodium sulfite and β‐mercaptoethanol. The keratinase exhibited a significant stability and compatibility with most of the tested commercial laundry detergents, demonstrating its feasibility for inclusion in laundry detergent formulation. These results suggest that this extracellular keratinase may be a useful alternative and eco‐friendly route for handling the abundant amount of waste feathers or for applications in detergent formulation and other industrial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号