首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
以硝酸钙、硝酸锌、乙酸镁、乙酸铝为原料,碳酸钠为沉淀剂进行共沉淀反应,先制得钙、镁、锌碳酸盐及氢氧化铝混合沉淀,再经陈化、水洗、干燥、焙烧制得钙镁锌铝固体碱催化剂。将蓖麻油甲醇解反应中的蓖麻油转化率作为活性评价指标,采用正交试验考察了制备条件对催化剂活性的影响,得到制备催化剂的优化条件为:n(Ca)∶n(Mg)∶n(Zn)∶n(Al)=2∶0.5∶0.5∶1,混合溶液p H 8,焙烧温度850℃,焙烧时间7 h。将优化条件下制备的固体碱催化剂用于催化蓖麻油甲醇解反应,蓖麻油转化率达93.2%。采用热重分析、X射线衍射、N2吸附-脱附、扫描电镜及Hammett指示剂滴定法对催化剂及其前驱体进行了表征。结果显示:催化剂前驱体在700~800℃温区有1个明显的失重台阶,在800℃以后质量基本不随温度变化;固体碱催化剂主要由Ca O、Zn O及Mg O3种晶体构成,其比表面积为44.08 m~2/g、孔容为0.062 65 cm~3/g,特征为多孔连续型蜂窝状结构;固体碱催化剂的碱强度在7.2~15.0之间,总碱位量为14.895 mmol/g。  相似文献   

2.
以硝酸钙、硝酸锌及硝酸铝为原料,碳酸钠为沉淀剂,采用共沉淀法制备了碳酸钙、碳酸锌及氢氧化铝。经陈化、抽滤、洗涤、干燥及焙烧得到钙锌铝固体碱催化剂。以蓖麻油甲醇解反应为模型反应,蓖麻油转化率为活性评价指标,采用正交实验考察了催化剂制备条件对其催化活性的影响。采用Hammett指示剂滴定法、TG、XRD、SEM及BET技术对催化剂及其前驱体进行了表征。结果表明:制备催化剂的优化条件为n(Ca)∶n(Zn)∶n(Al)=2.5∶0.5∶1、沉淀剂为碳酸钠、焙烧温度800℃、焙烧时间8 h,在优化条件下,蓖麻油转化率可达95.4%;催化剂前驱体在700~850℃温区有1个明显的失重台阶,在850℃以后质量基本不随温度变化;固体碱催化剂的碱强度在7.2~11.2之间,总碱位量为9.740 mmol/g,主要由Ca O、Zn O两种晶体构成,其形状为多孔的连续的不规则固体,其比表面积为30.75 m~2/g、孔容为0.051 64 cm~3/g。  相似文献   

3.
生物柴油磁性碱催化剂的制备及表征   总被引:1,自引:0,他引:1  
研究磁性载体负载活性物质条件对磁性碱催化剂制备生物柴油的影响。用浸渍法负载活性物质,考察煅烧温度、煅烧时间、n(K)/n(Si)对催化剂活性及回收率的影响,并通过正交实验确定负载活性物质的最佳条件为:煅烧温度450℃,煅烧时间3 h,n(K)/n(Si)为1.5。此条件下所制备的催化剂催化棉籽毛油制备生物柴油,第二次反应的相对转化率(基于甲醇钠)为94.77%,催化剂的回收率为62.17%。同时对催化剂进行表征,发现活性物质是K2CO3,且载体SiO2和活性物质K2CO3都是无定形结构。  相似文献   

4.
以二水合氟化钾、乙酸镁(四水)为原料,经过混合研磨、焙烧制得KF-MgO固体碱催化剂。采用单因素实验得到的优化制备条件为:摩尔比n(KF·2H2O):n(MgAc2·4H2O)=1,焙烧温度500℃,焙烧时间3 h。将制得的固体碱催化剂催化蓖麻油与甲醇的酯交换反应,得生物柴油的折射率为1.462 6,蓖麻油转化率为96.36%。通过热重分析、X射线衍射和扫描电镜对最佳条件下制备的KF-MgO固体碱催化剂及其前驱体进行表征,结果表明,KF-MgO固体碱催化剂的前驱体在500℃左右分解过程基本结束。催化剂主要以KMgF3的形式存在,呈蜂窝状,有一定数量的孔洞。  相似文献   

5.
钙基固体碱催化剂用于花生油酯交换制备生物柴油   总被引:3,自引:1,他引:3  
将钙基固体碱催化剂CaO和CaO/MgO用于催化花生油与甲醇酯交换制备生物柴油,考察了催化剂的制备条件,优化了CaO和CaO/MgO催化花生油酯交换反应工艺.研究表明,利用廉价碳酸钙作为原料,在800~900℃下N2气氛中煅烧制备的CaO具有比较好的催化活性;而CaO/MgO催化剂比较适宜的制备条件是用22.6%的Ca(Ac)2溶液浸渍MgO载体1次,在600℃下煅烧.CaO/MgO在空气中存放易失去活性,需在800~900℃下N2气氛活化.CaO和CaO/MgO催化剂均可使花生油与甲醇的酯交换反应在醇油摩尔比12:1、催化剂用量2%、反应温度65℃、反应时间2 h的条件下获得80%以上的酯交换转化率.与CaO相比,CaO/Mgo催化剂具有较高的抗水性和抗酸性,以及较好的重复使用性.  相似文献   

6.
采用共沉淀及焙烧的方法制备了Ca-Mg-Zn-O固体碱催化剂。采用正交试验考察了制备条件对Ca-Mg-Zn-O固体碱油脂醇解催化活性的影响,得到的优化条件为:n(Ca):n(Mg):n(Zn)=1:1:2、焙烧温度800℃、焙烧时间5 h。以优化条件下制备的Ca-Mg-Zn-O固体碱为催化剂,在醇/油摩尔比9:1、催化剂/油质量比0.04:1、搅拌速率550 r/min、反应温度65℃、反应时间3 h的条件下,蓖麻油转化率达到96.3%。采用TG-DTA、FTIR、XRD、BET技术及Hammett指示剂法对催化剂及其前驱体进行了表征,结果为:Ca-Mg-Zn碱式碳酸盐TG曲线有3个失重台阶,分别出现在200~350℃、450~550℃及680~750℃温区;Ca-Mg-Zn-O固体碱催化剂由ZnO、MgO及CaO 3种晶体构成,其BET、比表面积为5.91m~2/g,BJH脱附累积孔容为0.009 8 cm~3·g~(-1),BJH脱附平均孔半径为3.50 nm,碱强度在7.2~11.2之间。  相似文献   

7.
采用共沉淀、浸渍及高温焙烧的方法制备了Ca O/(Mg-Fe-O)固体碱催化剂,以蓖麻油转化率为催化剂活性评价指标,采用正交实验考察了制备条件对催化剂酯交换催化活性的影响。得到的优化条件为:Mg/Fe摩尔比3∶1,Ca(Ac)2浸渍液质量分数15%,浸渍时间12 h,焙烧温度800℃,焙烧时间2 h。以优化条件下制备的Ca O/(Mg-Fe-O)固体碱为催化剂,用于蓖麻油和甲醇酯交换反应,蓖麻油转化率可达94.74%。采用TG-DTA、FTIR、BET及XRD技术对催化剂及其前驱体进行了表征。结果表明:当温度超过750℃时,Ca(Ac)2/(Mg-Fe水滑石)几乎不再失重;Ca O/(Mg-Fe-O)固体碱和Ca(Ac)2/(Mg-Fe水滑石)相比,其—OH和CO2-3的红外吸收峰显著下降;负载于Ca O/(Mg-Fe-O)固体碱催化剂介孔中的Ca O起主要催化作用;Ca O/(Mg-Fe-O)固体碱中的Ca O以无定形或微晶的形式高度分散于Mg Fe2O4及Mg O表面。  相似文献   

8.
采用共沉淀法制备了催化剂前体镁铝水滑石,再高温焙烧制得镁铝复合氧化物催化剂。以蓖麻油和甲醇酯交换反应为探针反应,以蓖麻油转化率为催化剂活性评价指标,采用正交实验考察了催化剂制备条件对催化剂活性的影响,结果表明:在碳酸钠用量7.5%、焙烧温度550℃、焙烧时间7 h条件下,制得的镁铝复合氧化物催化剂用于蓖麻油和甲醇酯交换反应,得出蓖麻油转化率平均可达96.2%。采用TG-DTG、XRD、BET、SEM技术对优化条件下制得的镁铝水滑石及镁铝复合氧化物进行了表征,结果显示:镁铝水滑石在230℃和420℃时,有两个明显的失重峰;镁铝复合氧化物与氧化镁具有相似的晶相结构,其BET比表面积为211.7 m2/g,BJH脱附累积孔容(0.85~150 nm)为0.90 cm3/g,BJH脱附平均孔半径为9.6 nm,表面形貌呈蜂窝状。  相似文献   

9.
采用水热法制备了Ru-Mg Zr固体碱催化剂,通过XRD、XRF和CO2-TPD等方法对催化剂进行表征。结果显示,镁离子进入Zr O2晶格中形成固溶体,生成了新的碱性位点。试验结果表明,Ru-Mg Zr固体碱作为多相催化剂在亚油酸异构化反应中表现出良好的催化性能。在镁锆摩尔比为4∶1,催化剂用量为0.2 g,反应温度为180℃,反应时间为1.5 h的条件下,亚油酸的转化率达到65.09%。此外,催化剂重复使用5次后,没有明显的活性损失。通过气相色谱分析表明,产物主要为共轭亚油酸,其中以具有生物活性的9c,11t-CLA、10t,12c-CLA和9t,11t-CLA 3种异构体为主。  相似文献   

10.
以不同前躯体为原料,通过高温煅烧得到负载型固体碱催化剂(CaO/γ-Al2O3)。考察了以不同前躯体制得的催化剂在生物柴油制备中的反应特点,研究了活性组分负载量、催化剂煅烧温度、醇油摩尔比、催化剂用量及反应时间对棉籽油转化率的影响。结果表明:以Ca(AC)2及CaCl2和Na2CO3的反应产物CaCO3两种前躯体制备的CaO/γ—Al2O3催化剂具有较高的酯交换反应活性,是制备生物柴油的良好非均相催化剂。  相似文献   

11.
以镧、钙、镁、铝的硝酸盐为原料,以尿素为沉淀剂,采用均匀沉淀及高温焙烧的方法制备了La/Ca O/Mg O/Al2O3固体碱催化剂。采用单因素实验考察了制备条件对催化剂活性的影响,得到制备固体碱催化剂的优化工艺条件为:n(La)∶n(Ca)∶n(Mg)∶n(Al)=0.027 0∶4∶2∶2,反应温度120℃,焙烧温度750℃,焙烧时间8 h。将优化条件下制备的La/Ca O/Mg O/Al2O3固体碱用于催化蓖麻油和甲醇的酯交换反应,在n(醇)∶n(油)=9∶1、m(催化剂)∶m(油)=0.04∶1、搅拌速率550r/min、反应温度65℃、反应时间3 h的条件下,蓖麻油转化率可达88.44%。采用Hammett指示剂法、TG、BET、XRD及SEM对催化剂及其前驱体进行了表征。结果表明:La/CaO/MgO/Al_2O_3固体碱的碱强度为7.2~11.2;当温度超过830℃时,La-Ca-Mg-Al水滑石的质量几乎不再随温度变化;催化剂比表面积为50.84 m2/g、孔容为0.107 3 cm3/g,催化剂主要由Ca O、Mg O及Al2O33种晶体组成。  相似文献   

12.
采用共沉淀法以草酸钠为沉淀剂合成了一系列不同摩尔比的CaO-CeO_2非均相碱性催化剂,通过XRD、ICP、BET、CO_2-TPD对催化剂进行表征,考察了催化剂中加入Ca/Ce值对催化剂实际Ca/Ce值、比表面积以及碱性的影响,并用于酯交换反应。结果表明:Ca与Ce产生了良好的协同作用,且相较于纯CaO有了更好的形貌结构;在加入Ca/Ce值为1、焙烧温度700℃、催化剂用量3%、反应温度65℃、醇油摩尔比12∶1、反应时间6h时,反应收率达到了97%以上,相较于纯CaO有更好的抗酸性与抗水性;使用后的催化剂用乙醇洗净烘干后放入马弗炉中经过700℃、3h焙烧可以再生,循环使用4次仍然保持较好的催化活性,反应收率在80%以上。  相似文献   

13.
《粮食与油脂》2017,(3):75-77
采用浸渍法制备KOH/MgO固体碱催化剂,并用X–射线衍射对催化剂进行表征,同时对固体碱催化剂制备条件及酯交换反应催化剂用量进行了优化。结果表明,催化剂在焙烧过程中有部分K2CO3生成,当KOH负载量20%、焙烧温度650℃、焙烧时间6 h、酯交换反应温度75℃、时间2.5 h、醇油摩尔比6∶1,催化剂用量为棕榈油质量的4.5%时,脂肪酸甲酯的得率达90.0%±2.0%,所得催化剂在生物柴油制备过程中具有可观的应用前景。  相似文献   

14.
采用蒙脱土(MMT)为载体,通过浸渍法制备了KF/MMT固体碱催化剂,将其应用于大豆油制备生物柴油的酯交换反应中。通过XRD、FTIR、Hammett指示剂法、N2吸附-脱附、SEM等方法对KF/MMT催化剂结构进行了表征,并考察了酯交换反应条件对生物柴油产率的影响。结果表明:负载的KF与载体蒙脱土之间存在相互作用,催化剂表面存在Al—O—K活性中心;以KF/MMT为催化剂,在催化剂用量4%,醇油摩尔比12∶1,反应温度65℃,反应时间2.5 h条件下,生物柴油产率达到97.4%。  相似文献   

15.
以活性炭为载体,负载K2CO3后经过煅烧,制得K2O/C固体碱催化剂,通过正交实验,得到催化剂的优化制备条件为:K2CO3与活性炭摩尔比0.04,粒径40目,煅烧温度450℃,煅烧时间3.5h,浸渍时间3h;将其应用于催化棉籽油酯交换制备生物柴油,考察了催化剂的加入量、醇油比、反应温度、反应时间、原料中水分含量等对酯交换反应的影响,得到最佳工艺参数:醇油摩尔比8:1、催化剂加入量4.0%、反应时间1h。在此条件下,K2O/C的催化活性优于传统均相催化剂,重复使用多次仍具有较好的催化效果。  相似文献   

16.
王雪  王克冰  钟源  刘玉玲 《中国油脂》2022,47(6):100-104
以胜利褐煤为原料,通过浓硫酸一步炭化磺化法制备煤基固体酸催化剂,以油酸和甲醇的酯化反应评价催化剂的催化活性。采用单因素实验考察了固液比、磺化温度、磺化时间对催化活性的影响。采用红外光谱、元素分析、BET、SEM、XRD、热重分析等对煤基固体酸催化剂进行表征。结果表明,当磺化温度为110℃、磺化时间为90 min、固液比为1∶17时,煤基固体酸催化剂具有最优的催化活性,其催化油酸和甲醇的酯化反应的酯化率达到93.50%。煤基固体酸催化剂为具有较低石墨化程度的无定形碳结构,磺酸基已成功键合到了碳基载体上,同时具有丰富的含氧官能团,其表面呈现密集孔结构,且以介孔为主。煤基固体酸催化剂在低于140℃时具有较好的热稳定性,重复使用5次后,催化酯化率为57.21%。  相似文献   

17.
研究了固体碱CaO催化橡胶籽油与甲醇进行酯交换反应制备生物柴油的工艺条件。结果表明,焙烧温度为800℃,焙烧时间为2 h时,由CaCO3分解制得的CaO具有最高的反应活性。以此CaO为催化剂制备橡胶籽油生物柴油的最佳工艺条件为:催化剂CaO用量为油质量的1.5%,反应温度65℃,醇油摩尔比为15∶1,反应时间6 h。在此反应条件下,橡胶籽油生物柴油转化率为90.70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号