首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固体超强酸作为多相酸催化材料,具有许多传统质子酸催化剂无法比拟的优点,本论文在研究SO_4~(2-)/M_xO_y型固超酸的基础上,采用过硫酸铵溶液作为浸渍剂,选取ZrO_2、SnO_2、SiO_2的复合氧化物,将过硫酸根离子负载在上面,制备出新型S_2O_8~(2-)/ZrO_2-SnO_2-SiO_2固体超强酸催化剂.  相似文献   

2.
以Al2(SO43为固体酸催化剂,考察其在乙醇/甲苯体系中催化纤维素生成乙酰丙酸乙酯的工艺,探讨了共溶剂甲苯的体积分数、反应温度、催化剂用量以及反应时间对乙酰丙酸乙酯产率的影响,同时考察了该催化剂对不同碳水化合物的催化作用及其重复利用性.结果表明:在甲苯体积分数为10%,反应温度为180℃,催化剂用量为0.8 g,反应时间为3 h时,纤维素醇解转化为乙酰丙酸乙酯的摩尔产率高达51.6%;果糖、葡萄糖、蔗糖和菊糖转化生成乙酰丙酸乙酯的摩尔产率分别为54.3l%、47.3%、51.4%和49.6%,Al2(SO43对碳水化合物醇解生成乙酰丙酸乙酯具有良好的普遍适用性.该催化剂经回收重复使用5次后依然具有良好的催化活性.  相似文献   

3.
采用共沉淀法制备了三元稀土固体超强酸催化剂SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3,并将其应用于乙酸乙酯的催化合成反应中.以乙酸乙酯的合成酯化率为研究指标,探索了制备三元稀土固体超强酸催化剂42-/Nd_2O_3-ZrO_2-Fe_2O_3的条件.结果表明最佳制备工艺为:焙烧温度550℃,浸渍液浓度1.25 mol·L~(-1),陈化温度-15℃.在此条件下,乙酸乙酯合成酯化率达98.0%以上.同时通过红外光谱法、X射线衍射法、透射电镜法对三元稀土固体超强酸催化剂SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3进行了表征.结果表明:催化剂表面与SO_4~(2-)形成桥式双配位,具有高催化性能;表面有一定程度的晶态结构,其反应为表面催化;该催化剂其平均粒径小于17 nm,处于纳米尺度.  相似文献   

4.
考察了焙烧温度、硫酸浓度对自制的γ-Al_2O_3负载纳米级SO_4~(2-)/TiO_2固体超强酸的酸强度、比表面积的影响;用不同条件下制得的γ-Al_2O_3负载纳米级SO_4~(2-)/TiO_2固体超强酸催化乙酸和正丁醇酯化反应,检测乙酸转化率;讨论了影响γ-Al_2O_3负载纳米级SO_4~(2-)/TiO_2固体超强酸催化活性的因素,为批量制备提供参考.  相似文献   

5.
针对目前酯化工艺过程中存在的环境污染问题,以丙酸正丁酯催化合成为例,对酯化过程清洁生产工艺中固体酸催化剂的制备进行了研究.制备了 SO_4~(2-)/TiO_2固体超强酸催化剂,讨论了各种制备条件对该催化剂的丙酸正丁酯合成催化活性的影响,采用 TG/DTA、FTIR、XRD 等仪器分析手段对催化剂结构进行了表征,实验结果表明,SO_4~(2-)/TiO_2固体超强酸催化剂具有很好的催化活性和选择性,且无腐蚀、反应时间短、后处理简单、重复使用性好.  相似文献   

6.
制备了超细固体超强酸SO42-/ZrO2,采用XRD、SEM、IR对该催化剂进行表征.以超细固体超强酸SO42-/ZrO2为催化剂,棕榈酸与乙醇为原料合成棕榈酸乙酯.探讨了不同催化剂类型、醇酸摩尔比、催化剂用量、反应时间等因素对转化率的影响.结果表明,与普通固体酸相比,超细固体超强酸SO42-/ZrO2对于棕榈酸乙酯的合成具有较好的催化性能.较适宜的反应条件为n(棕榈酸)∶n(乙醇)=4∶1,催化剂用量0.8 g,反应3 h.在此条件下,棕榈酸的收率可达70.3%.  相似文献   

7.
本文详细考察了固体酸SO_4~(2-)/TiO_2-Al_2O_3的制备条件对其酯化活性的影响,并对催化剂进行了X光电子能谱和红外光谱分析,作者指出:催化剂的制备条件对其酯化活性有极大的影响。催化剂表面同时存在质子酸中心和路易斯酸中心。同时作者建立了催化剂酸中心模塑和表面物质结构模型。  相似文献   

8.
采用水热合成-浸渍法制备SO_4~(2-)/Fe_2O_3-ZrO_2(SFZ)固体超强酸催化剂,并将其用于异丁基苯酰基化反应。采用FT-IR、NH_3-TPD、TG、Py-IR、XPS、N_2吸附-脱附手段对制备的SFZ固体超强酸催化剂进行了详细表征。对SFZ催化异丁苯反应进行优化,在n(异丁苯)∶n(乙酰氯)=1∶1.2,反应温度70℃,反应时间3 h的条件下,SFZ-600(600℃焙烧)催化反应中异丁苯转化率达79.09%,IBAP收率为60.10%,对比相同条件下制备的SF-600(SO_4~(2-)/Fe_2O_3、600℃焙烧)催化剂,异丁苯转化率69.25%,IBAP收率为53.88%。SFZ-600催化剂在循环使用5次过程中,异丁基苯转化率68.66%,IBAP收率55.09%,SF-600催化剂在循环使用5次过程中,异丁基苯转化率56.67%,IBAP收率40.30%。证明复合型固体超强酸催化剂SFZ可显著提高单一型SF催化剂的活性和稳定性。  相似文献   

9.
邻二甲苯和苯乙烯在WO3/ZrO2固体超强酸的烷基化反应   总被引:5,自引:2,他引:5  
通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)6H2W12O40制备了WO3/ZrO2固体超强酸催化剂;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;研究了以邻二甲苯和苯乙烯制备1-苯基-1-(3,4-二甲基苯基)-乙烷(PXE)的烷基化反应,考察了催化剂的焙烧温度、WO3的负载量、反应温度、反应时间、催化剂用量对反应的影响以及催化剂稳定性.结果表明,在750~850 ℃,WO3的负载量为5%~15%的WO3/ZrO2体系可以形成超强酸,其表面上同时存在Lewis酸中心和Bronsted酸中心,并且可以相互转化;WO3/ZrO2固体超强酸催化剂在苯乙烯和邻二甲苯的烷基化反应中表现出良好的催化性能和稳定性;该反应的最佳实验条件为反应温度为100 ℃,n(邻二甲苯)/n(苯乙烯)=5.0,反应时间为5 h,催化剂用量为2.0 g.  相似文献   

10.
采用溶胶一凝胶法制备SO2-/TiO2固体超强酸,以异辛酸与季戊四醇的酯化反应为探针反应,考察浸渍液种类及浓度、焙烧温度对固体超强酸催化性能的影响.用流动指示剂法测定催化剂的酸强度,并采用原位吡啶吸附的IR谱图对催化剂进行表征.结果表明,在H2SO4浸渍液浓度为1.0 mol·L-1、500℃下焙烧3 h制备的SO2-4/TiO2催化剂活性最好,酯化率可达到85.0%.  相似文献   

11.
固体超强酸催化剂SO2-4/ ZrO2在缩醛反应中的应用   总被引:3,自引:3,他引:0  
以纳米氧化物为前驱体制备的固体超强酸催化剂SO2 -4 / ZrO2 , 其Hammett 酸强度常数小于-12 .14。将SO2 -4 / ZrO2 用于催化苯甲醛与乙酸酐的缩醛反应, 经红外光谱、气相色谱、核磁、熔点测定证明得到的缩醛具有较高的纯度。通过均匀设计实验, 考察催化剂制备过程中焙烧温度、硫酸浓度、浸泡时间和活化温度对缩醛产率的影响。优化出缩醛产率最高的催化剂制备条件为:焙烧温度为300 ℃, 浸渍液中硫酸的浓度为4 .5 mol/ L, 浸泡时间为1.0 h , 活化温度为305 ℃, 缩醛产率为93.6%。红外光谱和热重分析表明,SO2 -4 / ZrO2 超强酸中SO2 -4 吸附量大。重复实验表明使用10 次后,SO2 -4 / ZrO2 仍保持较高的催化活性, 且催化剂易处理, 易再生。  相似文献   

12.
以乙酸和正丁醇为原料合成乙酸正丁酯,以自制固体超强酸SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3为催化剂,研究了合成乙酸正丁酯的最佳反应条件.实验结果证明:固体超强酸SO_4~(2-)/Nd_2O_3-ZrO_2-Fe_2O_3是合成乙酸正丁酯的良好催化剂,利用正交实验确定合成乙酸正丁酯的最优工艺参数,得知其合成的最佳反应条件为:醇酸摩尔比1 1.5、催化剂用量0.8 g和反应时间3 h,根据最佳工艺条件进行验证,酯化率均可达到96.7%,该工艺条件具有重复性.  相似文献   

13.
采用沉淀-浸渍法制备了SO42-/ZrO2-Al2O3,固体超强酸,研究了SO42-/ZrO2Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为锆铝摩尔比为l2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4 h,催化剂的用量为总量的6.64%.此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能.  相似文献   

14.
高聚体原花青素的抗氧化性能明显不如低聚体,而且不易被人体吸收利用.该研究致力于制备性能优良的SO_4~(2-)/TiO_2固体酸催化剂,采用该固体酸降解莲房中提取的高聚体原花青素.用紫外分光光度计和凝胶色谱仪进行分析,以平均聚合度和降解率作为参考指标,对该反应的降解效果进行评价.研究结果表明,以10 mL高聚体原花青素溶液作为降解原料,固体酸加入量为0.05 g,反应温度为70℃,反应时间为60 min的反应条件下,高聚体的平均聚合度从5.95降为2.31,降解率可以达到61.18%.  相似文献   

15.
纳米固体超强酸Fe2O3/SO4^2-催化合成尼泊金异丁酯的研究   总被引:1,自引:0,他引:1  
以FeC l3溶液为原料制备了纳米固体超强酸催化剂Fe2O3/SO42-,对催化剂进行透射电镜(TEM)测定,样品颗粒呈管状,其粒径约100 nm.用红外光谱研究SO42-在金属氧化物固体表面上的存在形态与结构形式,表明该催化剂具有催化活性.以纳米固体超强酸SO42-/Fe2O3为催化剂,研究由对羟基苯甲酸与异丁醇直接酯化合成尼泊金异丁酯反应.通过正交实验研究了影响尼泊金异丁酯产率的主要因素,得到最佳实验条件为:醇酸物质的量比为4∶1、催化剂用量为尼泊金质量的3.0%、反应时间为3.0 h、反应温度为130℃.此时酯产率达到79.5%;考察了该催化剂的重复使用性.  相似文献   

16.
采用浸渍、沉淀法制备了固体超强酸催化剂S2O2-8/ZrO2-Al2O3.通过正交试验获得了催化剂制备的最佳条件,即ZrOCl2·8H2O和大孔Al2O3(SB粉)的质量比为25.0∶14∶2,硫代硫酸铵的浓度为0.8 mol/L,活化温度为650℃,活化时间为3 h.以固体超强酸S2O2-8/ZrO2-Al2O3为催化剂,由对羟基苯甲酸和无水乙醇合成对羟基苯甲酸乙酯.考察了醇酸摩尔比、催化剂质量和反应时间对酯产率的影响.得到最佳反应条件为:醇酸摩尔比为3.0∶1,催化剂质量为1.4 g(为酸质量的1%),酯化反应时间为3 h.在此反应条件下,酯化率可达79.5%.同时利用红外光谱仪(KBr压片)、质谱仪、显微熔点测定仪对产品进行了分析和测定,确定了产物为对羟基苯甲酸乙酯.并且催化剂重复使用6次其活性基本保持不变.  相似文献   

17.
采用浸渍、沉淀法制备了固体超强酸催化剂S2O2-8/ZrO2-Al2O3.通过正交试验获得了催化剂制备的最佳条件,即ZrOCl2·8H2O和大孔Al2O3(SB粉)的质量比为25.0∶14∶2,硫代硫酸铵的浓度为0.8 mol/L,活化温度为650℃,活化时间为3 h.以固体超强酸S2O2-8/ZrO2-Al2O3为催化剂,由对羟基苯甲酸和无水乙醇合成对羟基苯甲酸乙酯.考察了醇酸摩尔比、催化剂质量和反应时间对酯产率的影响.得到最佳反应条件为醇酸摩尔比为3.0∶1,催化剂质量为1.4 g(为酸质量的1%),酯化反应时间为3 h.在此反应条件下,酯化率可达79.5%.同时利用红外光谱仪(KBr压片)、质谱仪、显微熔点测定仪对产品进行了分析和测定,确定了产物为对羟基苯甲酸乙酯.并且催化剂重复使用6次其活性基本保持不变.  相似文献   

18.
制备固体酸催化剂SO42-/TiO2-Fe2O3,用于柠檬酸三正丁酯的合成试验.考察了反应时间、初始进料物质的量比、催化剂用量对反应产率的影响,反应最佳条件为:醇酸比6:1,催化剂用量2.0g(相对于0.1mol的柠檬酸),加热回流反应时间3h,转化率达94.5%,纯度大于99.0%.  相似文献   

19.
采用溶胶-凝胶法制备SO42-/TiO2固体超强酸,以异辛酸与季戊四醇的酯化反应为探针反应,考察浸渍液种类及浓度、焙烧温度对固体超强酸催化性能的影响。用流动指示剂法测定催化剂的酸强度,并采用原位吡啶吸附的IR谱图对催化剂进行表征。结果表明,在H2SO4浸渍液浓度为1.0 mol.L-1、500℃下焙烧3 h制备的SO42-/TiO2催化剂活性最好,酯化率可达到85.0%。  相似文献   

20.
通过双氰胺的热解法制备C_3N_4,而后将C_3N_4浸渍在硫酸铵溶液中24 h,过滤烘干后在550℃条件下的马弗炉中焙烧3 h,即制得固体超强酸C_3N_4-SO_4~(2-).通过红外光谱法、紫外吸收法、X射线衍射法、扫描透射电镜法对固体超强酸催化剂进行了表征.探究固体超强酸C_3N_4-SO_4~(2-)在合成乙酸乙酯的酯化反应上的酸催化性能,得知最佳制备条件为陈化温度为-15℃、浸渍液浓度为1.5 mol/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号