共查询到19条相似文献,搜索用时 46 毫秒
1.
针对河南九里山单一突出煤层特点,利用COMSOL Multiphysics软件模拟计算顺层钻孔瓦斯抽采半径,确定钻孔的布置间距,并对瓦斯抽采效果进行考察.研究结果表明,根据数值模拟结果确定1061工作面顺层钻孔的瓦斯抽采时间不小于6个月时,排放间距为1.5m;对瓦斯抽采效果进行考察,累计瓦斯抽采量为861.4万m3,抽采率达61.5%,残余瓦斯含量计算值和实测值、钻屑量S和钻屑瓦斯解吸指标△h2均小于《防治煤与瓦斯突出规定》或该矿区规定的临界值. 相似文献
2.
顺层钻孔有效瓦斯抽采半径数值解算方法研究 总被引:3,自引:0,他引:3
为了寻求皖北某矿合理的顺层钻孔抽采参数,使用COMSOL Multiphysics软件分别建立单个钻孔和多个钻孔抽采瓦斯的径向流动模型,通过数值模拟计算出钻孔周围瓦斯流动规律。建立的流动模型将游离瓦斯及吸附瓦斯分开考虑,在煤层中,参与渗流的为游离瓦斯,吸附瓦斯对裂隙系统而言为正的质量源,对现有二维瓦斯渗流模型进行了一定程度的修正。根据钻孔周围瓦斯压力分布规律分析单个钻孔不同抽采时间时的有效抽采半径,并分析多钻孔条件下相邻钻孔的相互影响规律。 相似文献
3.
为提高顺层预抽钻孔瓦斯抽采效果,以红阳二矿12号煤层1202工作面为工程背景,开展了合理封孔深度研究。通过分析巷道开挖等因素,按照影响范围将其划为卸压区、塑性区及弹性区。采用理论分析、数值模拟等方法,确定了合理的封孔深度为15m。基于此结论,在1202工作面回风顺槽以8m、12m、15m、18m、20m的封孔长度布置了40个顺层瓦斯预抽钻孔,开展了5组不同封孔深度条件下的现场试验,结果表明:随着封孔深度的增加,瓦斯抽采浓度及纯量亦随之上升,但当封孔长度超过15m时,提升效果不显著,因此综合考虑技术经济等因素,该工作面顺层钻孔合理的封孔长度应为15m。 相似文献
4.
利用顺层钻孔抽放技术对邹庄矿3204高瓦斯工作面进行瓦斯预抽,通过ANSYS软件模拟不同钻孔间距下煤层瓦斯压力的分布情况,结果表明:钻孔间距为3m时,瓦斯抽放效果最为理想。通过瓦斯预抽,3204工作面顺层钻孔抽采瓦斯平均浓度为63.5%;回采巷道实测平均煤层瓦斯含量为4.63m3/t,煤层残余瓦斯压力平均为0.2MPa,瓦斯治理取得良好效果。 相似文献
5.
刘军;卢鹏;刘志宽;苏敏 《煤炭科学技术》2024,52(S2):38-46
为了更好地揭示顺层钻孔瓦斯抽采过程中有效抽采半径的变化及抽采叠加效应对抽采效果的影响,基于孔隙−裂隙双重介质的假设,建立三维煤层瓦斯气固耦合模型。基于所建理论模型,以山西亚美大宁能源有限公司2901工作面为工程背景,利用COMSOL软件开展煤层瓦斯抽采数值模拟,分析了有效抽采半径随抽采时间的变化规律,结合现场试验结果验证了数值模拟结果的准确性。研究了多钻孔抽采叠加效应机理,分析了布孔间距和抽采负压对抽采叠加效应的影响。研究结果表明:有效抽采半径的变化幅度随抽采时间逐渐减缓,并趋于稳定,两者呈幂函数关系,函数表达式为:R =0.24t 0.59;采用瓦斯储量法进行现场测定,煤层瓦斯有效抽采半径的数值模拟结果与现场试验结果之间的平均误差为7.7%,验证了所建三维煤层瓦斯气固耦合模型的合理性;同一区域内布置多个顺层钻孔同时进行瓦斯抽采时,区域内存在叠加效应形成复合抽采达标区域,钻孔间距越小,钻孔控制区域内的煤层叠加效应越明显,相同抽采时间下瓦斯压力降幅越快,抽采负压对叠加效应几乎没有影响;以系数k=P m/P c作为抽采叠加效应的评判指标,在确定单孔抽采有效半径R 的情况下,顺层瓦斯抽采时叠加效应的影响范围可达2.2R ,研究结果为煤矿顺层钻孔的合理布局提供了理论依据。 相似文献
6.
基于达西定律建立了煤层气固耦合数学模型,根据煤层瓦斯基本参数,模拟计算出泰来煤矿9号煤层在满足一定抽采率条件下抽采时间与有效抽采半径的关系。根据泰来煤矿9号煤层抽采时间与有效抽采半径的关系,将3 m抽采半径应用到了该矿69203工作面第1循环。通过效果检验,该段煤层残余瓦斯含量、残余瓦斯压力均已降至临界值以下,并且保证了有效抽采率,取得了良好的应用效果。 相似文献
7.
8.
基于构建的顺层钻孔瓦斯抽采流固耦合模型,利用COMSOL模拟软件,结合某矿3901工作面的实际情况,开展本煤层顺层钻孔不同瓦斯抽采时间、钻孔间距的数值模拟研究。结果表明,有效抽采半径随着抽采时间的增加先快速增加后逐渐变缓,有效抽采半径与抽采时间呈对数函数关系,当抽采时间超过180 d时,抽采时间对有效抽采半径的影响较小,考虑采掘接续确定该工作面合理的抽采时间为180 d;抽采钻孔间距对煤层瓦斯压力的下降和抽采效果影响显著,布孔间距越小钻孔之间瓦斯压力下降幅度越明显,为了有效避免了“空白带”和抽采的无效叠加,结合3901工作面的实际情况,确定瓦斯抽采180 d后最合理的钻孔间距为6 m。 相似文献
9.
10.
顺层钻孔抽采煤层瓦斯有效影响半径数值模拟及应用 总被引:1,自引:1,他引:1
确定钻孔有效抽采半径是煤矿瓦斯安全高效抽采的关键,本文结合实际矿井的基础参数资料,利用流体力学软件Fluent,通过软件内置的多孔介质模型,对流场区域添加用于表征多孔介质性质的阻力参数来实现对流体在多孔介质中的流动过程的模拟。结果表明:1该工作面的理论有效瓦斯抽采半径约为1.9m,该工作面的抽采间距可设计为4m;2煤层渗透率改变影响瓦斯运移的阻力的变化,从而能大幅影响煤层内瓦斯的运移速度,而抽放负压通过影响瓦斯运移的动力,在一定程度上也会影响钻孔瓦斯流量;3模拟结果与试验结果具有很好的统一。 相似文献
11.
针对煤矿瓦斯抽采钻孔漏气致使瓦斯抽采不佳等问题,研究了不同钻孔漏气影响因素条件下瓦斯抽采效果,理论计算了钻孔周边裂隙漏气圈漏风范围和巷道裂隙区漏风范围;采用COMSOL数值模拟软件,分析了不同抽采时间下钻孔漏气压力分布、不同钻孔漏气影响因素下钻孔漏气流线及对瓦斯抽采的影响.研究结果为提高瓦斯抽采效率、降低钻孔漏气提供了... 相似文献
12.
为了有效防治瓦斯灾害的发生,采用COMSOL数值模拟软件对钻孔抽采过程中瓦斯运移规律以及抽采时间与煤层瓦斯有效抽采半径的关系进行了分析研究。研究得出:在不同抽采时间段下,随着抽采时间的增加,瓦斯压力降低的范围越来越广泛;随着抽采时间的增加,有效抽采半径也随之增加,但是有效抽采半径的增长幅度逐渐减小,再经过拟合分析得到抽采时间与有效抽采半径的关系近似于幂函数关系。通过在云盖山煤矿一矿现场施工验证,得到了所采二1煤层顺层钻孔有效抽采半径,为矿井顺层钻孔预抽回采工作面瓦斯提供了设计依据。 相似文献
13.
为了准确测定霍尔辛赫煤矿3308工作面煤层钻孔有效抽采半径,合理布置钻孔间距,结合现场实测的煤层瓦斯压力和渗透率等参数,运用COMSOL-Multiphysics仿真软件对3308工作面钻孔的瓦斯涌出规律和有效抽采半径进行了模拟分析,并进行了现场实测验证.结果表明:有效抽采半径随着抽采时间的推进不断增大并最终趋于恒定值... 相似文献
14.
针对煤层或其邻近层涌水对瓦斯抽采效果影响的研究甚少。分析了煤层底板涌水上行穿层孔瓦斯抽采效果,根据实际地质条件及涌水概况,建立了煤层底板滤水的瓦斯抽采评价模型,利用COMSOL数值模拟软件,对煤层底板涌水—瓦斯抽采模型进行计算和分析。研究可为邻近矿井的瓦斯治理工作提供一定参考。 相似文献
15.
为了增加煤层透气性,提高煤层瓦斯抽采效果,以某矿501工作面煤层地质条件为工程背景,采用理论分析、数值模拟、现场试验等方法,对某矿煤层起裂压力、单次压裂时间、压裂流量、影响半径、压裂钻孔抽采效果等参数展开研究。结果表明,模拟压裂孔注水1 h后,煤层压力由压裂孔向周围迅速降低,最终呈现出以压裂孔为圆心的圆形区域的致裂范围,最大压裂半径达到8.315 m;当对压裂泵主动升压至38 MPa时,煤层瞬间破裂,压力回降,流量瞬间增大,且达到压裂泵额定流量值,此时,煤体破裂效果完美;4号压裂孔首次压裂已经接近压穿煤体,进行第二次压裂时,流量曲线增加比较平稳,说明该孔在之前已贯通大部分裂隙,压裂半径可达22 m;对水力压裂孔和普通钻孔进行抽采比较发现,压裂3号钻孔的瓦斯浓度平均达到17.68%效果最为显著,与普通钻孔相比其平均浓度为1号普通钻孔的4.77倍、2号普通钻孔的3.12倍。 相似文献
16.
为了确定顶板割缝后有效抽采半径,尽可能减少施工量,采用COMSOL数值模拟软件,研究了顶板巷水力割缝钻孔间相互耦合关系以及钻孔有效影响半径。从消突方面分析,由于钻孔之间相对位置较近,钻孔之间相互耦合作用较大,不同角度钻孔相互耦合作用下,在中间区域形成了椭圆状消突区域;钻孔间具有强烈的耦合效应,与单一钻孔相比,其影响半径提高了2.3倍;割缝钻孔的有效影响半径为7 m,能够满足抽采效果。该研究为实际工程设计提供了技术支持。 相似文献
17.
为研究面间煤柱内的大直径钻孔抽采采空区瓦斯效果,基于某矿实际生产条件及COMSOL数值模拟软件,依据上覆岩层运移理论、采空区顶板岩性、顶板垮落破坏特征对采空区孔隙率进行了分块赋值,COMSOL数值模拟研究结果表明:钻孔布置的最佳距离为8~10 m。考虑经济因素及顶板垮落步距的影响,钻孔布置的最佳距离应为10 m;靠近工作面上隅角处,采空区内瓦斯浓度呈中心高、四周低的圆环状分布,该低瓦斯浓度圆环的出现与大直径钻孔对采空区内瓦斯的抽采作用密切相关。ORIGIN数据拟合及计算表明:10 m钻孔间距条件下,控制上隅角瓦斯浓度不超限的钻孔最小瓦斯抽放量为5.4 m3/min。该理论成果的成功运用,指导了该矿的生产安全。 相似文献
18.
为对比分析顺层钻孔在护孔和未护孔条件下的抽采效果,考虑煤体扩容特性,采用煤体孔隙率和渗透率动态数学模型,结合D-P屈服准则,建立了钻孔煤体破坏—渗流的流固耦合模型。以超化煤矿2煤层相关物理参数为基础,开展了钻孔卸压破坏范围及抽采瓦斯数值模拟,结果表明:钻孔发生卸压破坏后,虽然未护孔钻孔卸压范围是护孔钻孔的1.3倍,其周围煤体渗透率和孔隙率均大于护孔钻孔,但钻孔更易塌孔堵孔,当抽采90 d时,护孔钻孔有效抽采半径为未护孔钻孔的1.3倍。现场瓦斯抽采测定数据表明,护孔钻孔平均抽采瓦斯浓度为未护孔的1.6倍,平均抽采瓦斯纯流量为未护孔的1.4倍,并有效缩短了钻孔抽采时间。 相似文献
19.
成庄矿为了消除煤层的突出危险性,安全有效地开采井下3号煤层4311综采面,采用顺层钻孔预抽该综采面回采区域煤层瓦斯.成庄矿4311综采面作为试验区进行了消突措施、消突效果技术研究,在该综采面预抽煤层瓦斯过程中以及抽放结束后,进行煤层残余瓦斯含量测定,并对该综采面煤层区域进行预抽煤层瓦斯抽采效果达标和消突效果达标评判.上... 相似文献