首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DO对除磷过程的长期影响   总被引:6,自引:0,他引:6  
为研究溶解氧(DO)对除磷过程的长期影响,采用序批式间歇反应器(SBR),通过设置好氧阶段DO的不同(5.5~7.0 mg/L和0.5~1.5 mg/L),系统地考察长期运行在这两种DO水平下强化生物除磷系统(EBPR)除磷过程的特点.结果表明:在pH 7.2~7.6,温度(23±0.5)℃时,高DO对放磷和吸磷两个阶段均会产生负面影响.其厌氧阶段的放磷量比低DO情况下要少43.08%.吸磷过程在好氧阶段初始30 min内进行得最快,该期间内高低DO污泥的最大比吸磷速率分别为6.27和11.45 mg.g-1.h-1,前者比后者少45.24%.分析认为,过度曝气导致的聚磷菌体内聚β羟基丁酸盐(PHB)的不足和过多的进水碳源被用作反硝化,是本试验高DO状态下除磷性能恶化的主要原因.高DO在抑制丝状菌膨胀方面并不比低DO占有明显的优势,污泥除磷性能的改善往往伴随着污泥沉降性的好转.  相似文献   

2.
针对A~2/O+移动床生物膜反应器(A~2/O+MBBR)双污泥系统,以低碳氮比(C/N)生活污水为处理对象,考察启动过程的污泥特性和反硝化除磷特性,基于脱氮除磷的代谢机理建立系统的快速启动策略。研究结果表明:启动过程历时21 d完成,污泥结构稳定且具有较好的污泥沉降性和生物活性;平均重量污泥浓度从1 189 mg/L增加到1 760 mg/L,SVI值在95 m L/g MLSS以下,反硝化聚磷菌(DNPAOs)占聚磷菌(PAOs)的百分比从接种污泥时的10.87%增加到25.46%。启动过程,COD的去除效果基本稳定,A~2/O反应器可实现碳源的高效利用;硝化过程为反硝化除磷提供电子受体,TN的高效去除需要建立在NH+4-N氧化完全的基础上;PO_4~(3-)-P的去除特性与NO_3~--N的变化密切相关,除了缺氧区的同步脱氮除磷,好氧吸磷对稳定PO_4~(3-)-P出水浓度发挥着重要作用。在平均进水碳氮比为3.44的运行条件下,A~2/O+MBBR系统可实现有机物、氮、磷等污染物的同步高效去除,稳定运行阶段出水COD、NH_4~+-N、TN和PO_4~(3-)-P浓度分别为38.5、1.15、14.2、0.15 mg/L,COD、TN和PO_4~(3-)-P去除率分别为82.23%,74.72%和96.80%。DO、pH和ORP等实时控制参数的变化规律与脱氮除磷存在定量关系,稳定运行阶段厌氧区ORP为-398~-336 m V,反硝化过程pH值增幅0.55,ORP增加到-300~-175 m V,硝化过程pH值降低0.37。ORP、pH值可以直观地反映反硝化过程,pH值能够灵敏地反映硝化进程,实时控制参数的联合调控有利于促进系统的快速启动和稳定运行。  相似文献   

3.
UniFed SBR 工艺对生活污水除磷的研究   总被引:1,自引:0,他引:1  
鉴于UniFed SBR工艺具有进水/排水/沉淀阶段同步进行、底部进水、顶部出水及反应器保持恒水位状态等特点,此工艺具有良好的生物除磷脱氮性能.本试验采用厌氧/缺氧/好氧交替运行的UniFed SBR反应器.考察了不同进水碳磷比ρ(C)/ρ(P)值、排水比、最大除磷负荷及曝气量对于系统生物除磷效果的影响.结果表明,对于不同进水ρ(C)/ρ(P)值,分别得到相应的释磷和吸磷速率,当ρ(C)/ρ(P)=23时,系统的出水磷质量浓度为0.89 kg/m~3,去除率为94.67%,当ρ(C)/ρ(P)>23时,可使出水磷质量浓度为零,说明此工艺独特的运行方式适用于低ρ(C)/ρ(P)值生活污水的深度除磷;当进水ρ(COD)成为释磷的限制因素时,随着排水比的增大,出水ρ(P)降低,但当进水ρ(COD)充足时,排水比对于磷的去除影响不大,均能保持较高的去除效率.该工艺独特的运行方式使其在实际操作中达到了很好的除磷效果,并为强化生物除磷提出了新思路和新方法.  相似文献   

4.
SBR工艺强化反硝化除磷及控制参数   总被引:2,自引:0,他引:2  
采用SBR反应器,通过在厌氧—好氧运行模式(Ⅰ)中介入缺氧段,即厌氧—好氧—缺氧—好氧运行模式(Ⅱ),缺氧与好氧条件下磷的吸收量的百分比值由28.2%升高至68.3%,实现了反硝化同步除磷、脱氮.系统稳定运行了90个周期,ρ(COD)、ρ(PO_4~(3-)-P)、ρ(TN)平均去除率分别为92.0%、98.0%、81.5%.通过间歇实验发现,ρ(NO_2~--N)=30mg/L时,NO_2~--N对反硝化吸磷并无影响,并且能作为电子受体,与NO_3~--N相比,反硝化吸磷速率更快.实验对pH值、E_(ORP)进行在线检测发现,厌氧阶段E_(ORP)曲线上的拐点对应磷的释放终点;好氧阶段ⅠE_(ORP)和pH值曲线上的拐点则对应着硝化终点;缺氧阶段pH值的拐点对应反硝化终点;好氧阶段ⅡE_(CRP)和pH值的拐点分别对应COD降解和吸磷终点.因此,pH值、E_(ORP)能作为实时控制参数,来提高脱氮、除磷效率.  相似文献   

5.
为解决城市污水处理厂进水碳源不足、生物脱氮除磷效果较差及剩余污泥产量较大的问题,采用不断提高碱性发酵液投加率的方式,考察了碱性发酵液对A~2O系统脱氮除磷效果的影响.研究结果表明:随着碱性发酵液投加率的不断增加,A~2O系统进水pH值不断增大,COD和NH_4~+-N去除率基本不变,而TN和PO_4~(3-)-P的去除率略微下降.外碳源全部由发酵液提供后,系统COD、NH_4~+-N、TN和PO_4~(3-)-P的去除率分别为87.00%、98.86%、79.73%和80.92%,NH_4~+-N、TN和PO_4~(3-)-P的去除量较单独投加乙酸钠时分别提高24.93%、19.05%和86.08%.  相似文献   

6.
A/ASBR中PHB转化与反硝化吸磷的关系研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过COD浓度对A/ASBR反硝化除磷脱氮系统的影响试验表明,过高或过低的COD都不利于反硝化除磷系统的正常运行,当COD=220~300mg/l时,可以获得较为理想的处理效果.发现了缺氧段残存的外碳源有机物和厌氧储存的胞内碳源PHB对反硝化除磷过程的影响;试验结果进一步表明以PHB为碳源的反硝化除磷过程中,PHB的消耗与反硝化除磷脱氮具有良好的相关关系,并且2 mg NO3--N的转化可以促进1 mg PO3-4-P的吸收.  相似文献   

7.
改性活性氧化铝吸附去除水中痕量磷的性能   总被引:2,自引:0,他引:2  
为了获得更为高效的去除水中痕量磷的方法,通过静态吸附试验考察了经Al_2(SO_4)_3或Na_2SO_4改性的活性氧化铝(γ-Al_2O_3)吸附除磷性能,观察了吸附剂投量、pH值及水温变化对PO_4~3-P去除效果的影响及改性前后的γ-Al_2O_3对模拟水样中不同形态磷的去除效果.结果表明:γ-Al_2O_3经Al_2(SO_4)_3或Na_2SO_4改性后对PO_4~3-P的去除效果比改性前有显著提高,对PO_4~(3-)-P的去除率分别提高了18.53%和14.34%;改性γ-Al_2O_3对PO_4~(3-)-P的去除率在-定的投量范围内随投量的增加明显提高;改性γ-Al_2O_3对PO_4~(3-)-P的吸附作用以物理吸附为主,随着温度和pH值的升高,除磷效果均呈下降趋势;经Al_2(SO_4)_3改性的γ-Al_2O_3表现出更好的除磷效果和较强的水质适应性;水中浊质对吸附除磷效果影响较大,因此γ-Al_2O_3更适合滤后水的深度除磷.  相似文献   

8.
现有SBR的时序过程控制无法应对水质的波动,已经造成了能源的无效输入和水质管理的失败.为了解决这一问题,研究开发了以节能和优化处理效能为目标的SBR除磷过程实时控制策略.试验中建立了3个具有不同除磷种群结构的SBR系统作为研究对象,通过监测系统内厌氧放磷和好氧吸磷过程中磷的动力变化及其在线ORP和pH值的特征曲线,确立了ORP和pH作为除磷过程在线控制参数的控制策略.研究发现,厌氧pH曲线变化趋势对生物种群结构的变化具有很好的指示作用.可以建立预测系统内聚糖菌和聚磷菌的相对数量的监测诊断系统.  相似文献   

9.
以实际城市生活污水为处理对象,调整A/O分段进水工艺结构和运行参数,对比研究了系统去碳、脱氮、除磷性能,着重分析了改进后工艺(改良UCT分段进水工艺)的脱氮除磷机理.结果表明,改良UCT分段进水工艺在进水分配比40%:30%:30%,污泥龄8~9 d,内循环和污泥循环比75%,厌氧区、缺氧区、好氧区的体积比1∶3∶6的运行条件下,可以同时获得碳、总氮、总磷的高效去除,去除率分别为(83.9±3.3)%、(83.5±1.4)%和(86.6±2.4)%,对比A/O分段进水工艺脱氮除磷性能得到了显著的提升.  相似文献   

10.
为强化低碳源污水的脱氮除磷效能,采用序批式膜生物反应器(SMBR),通过交替曝气的运行方式,构建了厌氧-交替好氧缺氧-序批式膜生物反应器(A-(O/A)n-SMBR)反硝化除磷系统,考察了系统在不同溶解氧(DO)含量下污染物去除效能及聚磷菌的构成特征.结果表明:当DO的质量浓度由2.0~2.5mg/L变化至0.5~0.8mg/L的过程中,系统对氨氮(NH3-N)和有机物(COD)的去除率均可达到90%以上,出水COD和NH3-N的质量浓度分别小于25mg/L和1mg/L;当DO含量较低(0.5~0.8mg/L)时,系统对总磷(TP)的去除率高于对总氮(TN)的去除率,而DO含量较高(2.0~2.5mg/L)时则相反;而DO的质量浓度控制在1.0~1.2mg/L时,TP和TN的去除率可分别到达85%~90%和80%~85%.DO含量对交替好氧/缺氧运行的SMBR系统中聚磷菌构成影响较大,当DO的质量浓度由2.0~2.5mg/L降至0.5~0.8mg/L时,反硝化除磷菌(DPAOs)的比例由40.30%提高至75.10%,而好氧除磷菌(PO)比例则从59.70%降低为24.90%.  相似文献   

11.
为了探究闲置剩余污泥活性恢复过程中除磷性能的变化,采用厌氧-好氧交替运行的序批式间歇反应器(SBR)进行驯化,考察了比释(吸)磷量、比释(吸)磷速率、污泥浓度、吸释比(好氧吸磷量与厌氧释磷量的比值)等指标的变化。结果发现:在污泥龄控制为12.5 d的情况下,比释磷量与比吸磷量的恢复进程保持同步,其相关系数为0.927。除磷性能在活性污泥更新了16.7%时开始复苏,更新了45.8%后迅速提高,此时吸释比稳定在1.5~2,活性污泥更新58.3%时除磷性能基本完全恢复。厌氧段释磷期间pH的下降值可以间接指示吸磷表现,厌氧段pH在硝酸盐膝后的降低值与释磷量间的相关系数为0.675,而氧化还原电位(ORP)无论在厌氧还是好氧过程均无法指示除磷性能的变化。结构稳定的活性污泥是生物除磷性能恢复的前提,驯化过程中污泥浓度趋于稳定时除磷性能开始显著改善。  相似文献   

12.
以低C/N实际污水为研究对象,研究进水分配比对分段进水A~2/O工艺脱氮除磷性能的影响.以稳态条件下建立的物料平衡方程为基础,分析进水分配比对处理过程的影响.结果表明,分段进水A~2/O工艺平均出水CODCr和NH3-N质量浓度基本维持为25.6~41.2mg/L和0.35~1.40mg/L,出水水质较稳定;出水TN、TP受进水分配比的影响明显.根据已建立的物料平衡方程分析发现,当进水分配比由6∶3降低至3∶6时,缺氧单元反硝化脱氮贡献率由36.95%升至83.47%,厌氧单元反硝化脱氮贡献率由43.81%降至12.30%,好氧单元同步硝化反硝化脱氮贡献率由19.24%降至4.23%,缺氧单元反硝化成为去除TN的主要途径,TN总体去除率升高9.95%;缺氧单元缺氧聚磷除磷贡献率由5.20%升至13.00%,好氧单元好氧聚磷除磷贡献率由94.80%降低至87.00%,好氧聚磷为去除TP的主要途径,但TP总体去除率降低5.37%.  相似文献   

13.
为了寻找有效可行的双SBR脱氮除磷系统的启动方法,在系统中进行了反硝化聚磷菌(DPB)的培养.培养过程中阶段式提高氨氮投加浓度(氨氮浓度逐渐升高分别为40、50、60、70 mg N/L),且好氧结束后上清液采取连续进水的方式由好氧反应器(O-SBR)回流至厌氧-缺氧反应器(A2-SBR).结果表明:在A2-SBR和O-SBR初始污泥浓度分别为3200 mg/L和2500 mg/L时,采用阶段式氨氮投加方式和缺氧连续性进水方式,经过14 d培养,成功启动了双SBR脱氮除磷系统.磷的去除率达96.3%,总氮的去除率为72.6%.优于Bardenpho工艺除磷效果.  相似文献   

14.
通过正交试验研究了溶解氧(DO)、污泥浓度(MLSS)、污泥回流比(R)对改良型氧化沟脱氮除磷效果的影响。极差分析结果表明,影响CODCr、TN、TP去除率各因素的重要性顺序分别为:DO〉MLSS〉R、DO〉R〉MLSS、MLSS〉R〉DO。方差分析结果表明,DO和MLSS对脱碳具有较显著的影响,DO对脱氮具有较显著的影响,MLSS、R对除磷具有较显著的影响。改良型氧化沟脱氮除磷的最佳运行工况为氧化沟缺氧区DO=0.3-0.5 mg/L、好氧区DO=2.0-2.5 mg/L,MLSS=5 000 mg/L,污泥回流比R=65%。  相似文献   

15.
用不同声能密度(0,0.05,0.1,0.15,0.2,0.3 W/mL)的超声波对同步硝化内源反硝化除磷(SNEDPR)系统进行周期性辐照,通过考察系统的脱氮除磷效果、污泥性能、微生物活性和胞内物质转化,研究超声波声能密度对SNEDPR系统的影响.结果表明,声能密度为0.1 W/mL时除磷效果最好,出水PO_4~(3-)-P浓度平均为0.27 mg/L.超声组反应器的污泥浓度较对照组低29%~38%,出现污泥减量现象.以亚硝酸盐作为电子受体的比吸磷速率在0.10 W/mL时达到最大为5.47 mg PO_4~(3-)-P/g MLSS·h.声能密度为0.10 W/mL的厌氧阶段ΔPoly-P/ΔHAc在各组中最大为0.57,表现出超声波对PAO的强化.厌氧阶段的Poly-P和释磷量的变化显示超声波能够有效降低无效释磷及"溶磷"现象.  相似文献   

16.
SBR法处理低碳源城市污水除磷脱氮效果及规律研究   总被引:6,自引:0,他引:6  
介绍了用SBR法(序批式活性污泥法)处理低碳源城市污水,研究了生物除磷效果和好氧反硝化脱氮效果及其影响因素.试验结果表明,磷的出水质量浓度低于0.8mg/L,去除率达到92%~98%;磷的厌氧释放是好氧吸收的前提条件,而且厌氧释磷量和好氧吸磷量存在线性关系;DO是影响好氧反硝化的主要因素,当DO=2mg/L时,总氮的去除率最大.  相似文献   

17.
通过改变进水硝酸盐浓度,考察了硝酸盐对缺氧和好氧两种不同氧环境下的磷酸盐还原系统除磷效能的影响。试验结果表明,硝酸盐对两种氧环境下磷酸盐还原系统的除磷效能影响显著。当进水硝酸盐浓度为105~160mg/L时有利于缺氧条件下的磷酸盐还原。而进水硝酸盐对好氧条件下的磷酸盐还原产生显著抑制作用,并且两者存在显著的负相关(R^2=0.9827)。这种差异主要是由于两种不同氧环境下,硝酸盐对微环境构造的影响不同而造成的。同时,不同浓度的进水硝酸盐还会影响反应器内的PH值,进而影响磷酸盐还原进程。结果表明,偏碱性(pH8左右)有利于两种氧环境下的磷酸盐还原。  相似文献   

18.
采用8.8 m3的间歇式活性污泥反应器中试系统,研究其脱氮除磷过程的能耗情况.通过变频控制技术维持SBR曝气阶段溶解氧(dissolved oxygen,DO)的质量浓度ρ(DO)恒定,考察了不同ρ(DO)、温度及运行方式下好氧阶段的耗电量和反硝化碳源的投加量.结果表明,与工频运行模式(风机在设定频率下运行)相比,变频运行模式可降低能耗约49.4%,且ρ(DO)维持在2.0 mg/L左右时节能效果最好.由于温度对微生物活性的影响,系统能耗随温度的升高而逐渐降低.最后对比分段进水方式与传统SBR运行方式,发现分段进水方式不仅减少了47.6%的碳源投加成本,而且减少了好氧曝气阶段的反应时间,从而节省约17.9%的电能消耗.  相似文献   

19.
在中试规模SBR(Sequencing Batch Reactor)工艺处理实际生活污水过程中,主要考察变频控制DO浓度恒定条件下温度对脱氮除磷及运行费用的影响。结果表明:温度对系统中COD和磷酸盐去除性能影响不明显,对系统中的氨氮去除影响比较显著。温度在11~26℃范围内,比氨氧化速率会随着温度的下降而降低。同时,常温条件(18~26℃)下微生物放磷和吸磷速率几乎维持恒定;低温条件下(11~18℃),放磷和吸磷速率随着温度下降大幅降低。最后,考察了不同温度条件下,SBR曝气阶段耗电量的变化规律,分析不同温度下变频控制DO浓度对SBR工艺曝气阶段耗电量的影响,为SBR污水处理厂运行提供理论依据。  相似文献   

20.
新型GS-MBR工艺生物强化除磷试验研究   总被引:2,自引:0,他引:2  
采用新型GS-MBR对校园污水生物强化除磷效果进行了试验研究。小试装置采用全泥龄操作,正常运行92d。SBR运行条件为厌氧5h,好氧5h,沉淀1h,出水与进水合计1h,进水COD、NH4^+—N、TP和TN分别为202-550mg/L、7.66~16.46mg/L、1.25~3.28mg/L和10.56-38.26mg/L,去除效率平均分别为95,2%、95%、96.4%和50.5%。进水COD/TP=148,出水磷浓度仅为70μg/L。分析表明:进水COD/TP是本装置生物强化除磷的关键因素,在进水COD/TP较高的条件下,无需排泥也能达到强化除磷的目的。此外,膜污染以无机盐为主,酸洗效果优于碱洗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号