首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

2.
Incubation of human lymphocytes with ConA causes an increase in [Na+]i and a decrease in [K+]i. This effect is not due to the experimental washing procedure, but is due to the ConA-induced increase in permeability which is not fully compensated by the increase in active transport. The ConA-induced increase in 42K+ uptake consists of an increase in leak flux which is independent of [Na+]o, and of an increase in pump flux which is dependent on [Na+]o. The increase in leak flux may be caused by increased membrane fluidity. The increase in pump flux may be produced by the increased [Na+]i and by a stimulation of Na+, K+ATPase.  相似文献   

3.
The whole-cell patch-clamp technique was used to voltage clamp acutely isolated myocytes at -60 mV and study effects of ionic environment on Na/K pump activity. In quiescent guinea pig myocytes, normal intracellular Na+ is approximately 6 mM, which gives a total pump current of 0.25 +/- 0.09 pA/pF, and an inward background sodium current of 0.75 +/- 0.26 pA/pF. The average capacitance of a cell is 189 +/- 61 pF. Our main conclusion is the total Na/K pump current comprises currents from two different types of pumps, whose functional responses to the extracellular environment are different. Pump current was reversibly blocked with two affinities by extracellular dihydro-ouabain (DHO). We determined dissociation constants of 72 microM for low affinity (type-1) pumps and 0.75 microM for high affinity (type-h) pumps. These dissociation constants did not detectably change with two intracellular Na+ concentrations, one saturating and one near half-saturating, and with two extracellular K+ concentrations of 4.6 and 1.0 mM. Ion effects on type-h pumps were therefore measured using 5 microM DHO and on total pump current using 1 mM DHO. Extracellular K+ half-maximally activated the type-h pumps at 0.4 mM and the type-1 at 3.7 mM. Extracellular H+ blocked the type-1 pumps with half-maximal blockade at a pH of 7.71 whereas the type-h pumps were insensitive to extracellular pH. Both types of pumps responded similarly to changes in intracellular-Na+, with 9.6 mM causing half-maximal activation. Neither changes in intracellular pH between 6.0 and 7.2, nor concentrations of intracellular K+ of 140 mM or below, had any effect on either type of pump. The lack of any effect of intracellular K+ suggests the dissociation constants are in the molar range so this step in the pump cycle is not rate limiting under normal physiological conditions. Changes in intracellular-Na+ did not affect the half-maximal activation by extracellular K+, and vice versa. We found DHO-blockade of Na/K pump current in canine ventricular myocytes also occurred with two affinities, which are very similar to those from guinea pig myocytes or rat ventricular myocytes. In contrast, isolated canine Purkinje myocytes have predominantly the type-h pumps, insofar as DHO-blockade and extracellular K+ activation are much closer to our type-h results than type-1. These observations suggest for mammalian ventricular myocytes: (a) the presence of two types of Na/K pumps may be a general property. (b) Normal physiological variations in extracellular pH and K+ are important determinants of Na/K pump current. (c) Normal physiological variations in the intracellular environment affect Na/K pump current primarily via the Na+ concentration. Lastly, Na/K pump current appears to be specifically tailored for a tissue by expression of a mix of functionally different types of pumps.  相似文献   

4.
In order to assess the contribution of oxidative metabolism to K+(86Rb+) transport across the lamprey red cell membrane, the effects of various metabolic inhibitors were examined. The influx of K+ was reduced markedly in the presence of 20 mumol/l 2,4-dinitrophenol (2,4-DNP) or rotenone, and to a lesser extent by 1 mmol/l cyanide. Rotenone produced complete inhibition of the K+ active transport and a partial blockade of K+ channels by 28% on the average. Addition of 2,4-DNP to incubation media resulted in a significant reduction of both active transport of K+ (by 47%) and of K+ movement via channels (by 57%). The inhibitory effect of 2,4-DNP on total K+ influx was independent on decreasing extracellular pHe from 7.4 to 6.5. The blocking action of 1 mmol/l Ba2+ on K+ channels was abolished in the red cells incubated at pHe 6.5. Treatment of the red cells with 1 mmol/l cyanide diminished active transport of K+ to about 34% of control values but did not affect K+ channels. The obtained data indicate that in the lamprey red blood cells at least a half of energy needed for the active transport of K+ is supplied with ATP produced by oxidative phosphorylation. It may be suggested that NADH dehydrogenase is the key enzyme required for active transport of K+ in the cells, as rotenone, a selective blocker of this enzyme, causes a complete blockade of the Na+, K(+)-pump.  相似文献   

5.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

6.
Despite recent progress in the molecular characterization of high-conductance Ca(2+)-activated K+ (maxi-K) channels, the molecular identities of intermediate conductance Ca(2+)-activated K+ channels, including that of mature erythrocytes, remains unknown. We have used various peptide toxins to characterize the intermediate conductance Ca(2+)-activated K+ channels (Gardos pathway) of human and rabbit red cells. With studies on K+ transport and on binding of 125I-charybdotoxin (ChTX) and 125I-kaliotoxin (KTX) binding in red cells, we provide evidence for the distinct nature of the red cell Gardos channel among described Ca(2+)-activated K+ channels based on (i) the characteristic inhibition and binding patterns produced by ChTX analogues, iberiotoxin (IbTX) and IbTX-like ChTX mutants, and KTX (1-37 and 1-38 variants); (ii) the presence of some properties heretofore attributed only to voltage-gated channels, including inhibition of K transport by margatoxin (MgTX) and by stichodactyla toxin (StK); (iii) and the ability of scyllatoxin (ScyTX) and apamin to displace bound 125I-charybdotoxin, a novel property for K+ channels. These unusual pharmacological characteristics suggest a unique structure for the red cell Gardos channel.  相似文献   

7.
Several studies have shown in essential hypertension alterations of the transmembrane red blood cells sodium fluxes, as an involvement, especially in the early phases, also of the adrenergic system. In this study we evaluated the behaviour of red blood cells fluxes of sodium before, during and after the cold pressor test, a method used also to evoke an adrenergic stimulation, in twenty hypertensive subjects, 14 males and 6 females, with an average age of 43.2 +/- 5.7 years, with normal weight and without cardiovascular complications and metabolic diseases. The behaviour of the Na+ total efflux (Na+ TE), of the Na+/K+ pump, of the Na+K+ cotransport (Na+/K+ CT), of the Na+/Li+ counter transport (Na+/Li+ Cnt), of the Na+ passive permeability (Na+ PP), of the intracellular Na+ (I Na+) and of the plasmatic noradrenaline (NE) was evaluated basally, at the third minute during cold pressor test (CPT) and 20 minutes after the end of the test. The test, which the same method, was repeated after a 30 day treatment with propranolol at the dose of 240 mg/day in three daily administrations. The beta-blockade caused, besides the reduction of both the systolic and diastolic pressure values, a significant increase in the Na+/K+ CT (from 248 +/- 41 to 314 +/- 71 mmol/l/cells/h, p < 0.001) and a decrease in the Na+ PP (from 0.039 +/- 0.004 to 0.023 +/- 0.007 hr-1, p < 0.00001), probably directed towards the reduction of the accumulation of intracellular Na+, that could compete, among the other mechanisms, with the anti-hypertensive action of the beta-blockers. The CPT caused, before the beta-blockade, a significant depression of the Na+/K+ pump (from 2057 +/- 149 to 1610 +/- 101 mmol/l/cells/h, p < 0.00001) and of the Na+ TE (from 2640 +/- 397 to 2032 +/- 179 mmol/l/cells/h, p < 0.00001) inversely correlated to the levels of NE (r = -0.60, p < 0.003), with a consequent increase in I Na+ (from 6.2 +/- 0.6 to 7.5 +/- 1.5 mmol/l/cells, p < 0.001), showing how the adrenergic activation in hypertensive subjects is able to interfere with the systems of transmembrane transport with an inhibitory attitude, that is expressed by an increase in the levels of I Na+. The beta-blockade was able to outweigh the depression of the Na+/K+ pump (from 1843 +/- 584 to 1728 +/- 640 mmol/l/cells/h, p: ns) and the reduction of the Na+ TE, preventing the accumulation of I Na+ (from 6.3 +/- 1.6 to 6.6 +/- 1.3 mmol/l/cells, p: ns). Such data show an increased susceptibility of the Na+ transport systems to the adrenergic stimuli in hypertensive subjects with a tendency to favor the accumulation of I Na+ and that the beta-blockade is able to antagonize the effects, with a maintenance of the intracellular levels of Na+.  相似文献   

8.
The mechanism underlying outward chloride transport in the cell body and in the neuritic field of cockroach Dorsal Unpaired Median (DUM) neurones was assessed using the intracellular microelectrode technique. The chloride equilibrium potential was indirectly estimated from the reversal potentials of responses to gamma-aminobutyric acid (GABA) pressure ejections and of inhibitory postsynaptic potential (IPSP) evoked by electrical stimulation of the anterior connectives. Changes in intracellular chloride concentration [Cl-]i following various treatments were estimated from the amplitude changes of soma GABA responses and IPSP. Decreasing external Cl- concentration reduced the amplitude of GABA-mediated inhibitory events without affecting the membrane potential. Cl-/K+ co-transport was assessed by increasing external K+ concentration. The rate of outward Cl- movement was reduced furosemide but not by SITS or DIDS. All these results suggest that Cl- is not passively distributed in DUM neurones and that an active outwardly directed Cl-/K+ co-transport is implicated in the regulation of [Cl-]i.  相似文献   

9.
The initial release of Ca2+ from the intracellular Ca2+ stores is followed by a second phase during which the agonist-dependent Ca2+ response becomes sensitive to the extracellular Ca2+, indicating the involvement of the plasma membrane (PM) Ca2+ transport systems. The time course of activation of these transport systems, which consist of both Ca2+ extrusion and Ca2+ entry pathways, is not well established. To investigate the participation of these processes during the agonist-evoked Ca2+ response, isolated pancreatic acinar cells were exposed to maximal concentrations of an inositol 1,4,5-trisphosphate-mobilizing agonist (acetylcholine, 10 microM) in different experimental conditions. Following the increase of [Ca2+]i, there was an almost immediate activation of the PM Ca2+ extrusion system, and maximal activity was reached within less than 2s. The rate of Ca2+ extrusion was dependent on the level of [Ca2+]i, with a steep activation at values just above the resting [Ca2+]i and reached a plateau value at 700 nM Ca2+. In contrast, the PM Ca2+ entry pathway was activated with a much slower time course. There was also a delay of 3-4 s between the maximal effective depletion of the intracellular Ca2+ stores and the activation of this entry pathway. By use of digital imaging data, the PM Ca2+ transport systems were also analyzed independently in two regions of the cells, the lumenal and the basal poles. With respect to the activation of the Ca2+ entry pathways, no significant difference existed between these two regions. In contrast, the PM Ca2+ pump displayed a different pattern of activity in these regions. In the basal pole, the pump activity was more sensitive to changes of [Ca2+]i and had a higher maximal activity. Also, in the lumenal pole, the pump became saturated at values of [Ca2+]i around 700 nM, whereas at the basal pole [Ca2+]i had a biphasic effect on the pump activity, and higher [Ca2+]i inhibited the pump. It is argued that these differences in sensitivity to the levels of [Ca2+]i and the different relationship between [Ca2+]i and the rate of extrusion at the two functional poles of the pancreatic acinar cells indicate that the plasma membrane Ca2+ ATPase might play an important role in the polarization of the Ca2+ response.  相似文献   

10.
Glutamate transport across the plasma membrane of neurons and glia is powered by the transmembrane electrochemical gradients for sodium, potassium, and pH, but there is controversy over the number of Na+ cotransported with glutamate. The stoichiometry of glutamate transporters is important because it determines a lower limit to the extracellular glutamate concentration, [glu]o, in both normal and pathological conditions. We used whole-cell clamping to study the stoichiometry of the glial transporter GLT-1, the most abundant glutamate transporter in the brain, expressed under control of the Tet-On system in a Chinese hamster ovary (CHO) cell line selected for low endogenous glutamate transport. After the induction of GLT-1 expression with doxycycline, glutamate evoked a Na+-dependent inward current with the voltage dependence and pharmacology of GLT-1 and acidified the cell cytoplasm. Raising [K+]o around cells clamped with electrodes containing sodium and glutamate evoked an outward reversed uptake current. These responses were reduced by the specific GLT-1 blocker dihydrokainate (DHK). DHK evoked an outward current with NO3-, but not with Cl-, as the main intracellular anion, suggesting that the anion conductance of the transporter is active even without external glutamate but generates little current in the absence of highly permeable anions like NO3-. Measuring the reversal potential of the transporter current in various ionic conditions suggested that the transport of one glutamate anion is coupled to the cotransport of three Na+ and one H+ and to the countertransport of one K+. This suggests that in ischemia, when [K+]o rises to 60 mM, the reversal of glutamate transporters will raise [glu]o to >50 microM.  相似文献   

11.
The aims of this study were to characterize the routes of influx of the K+ congener, Rb+, into cardiac cells in the perfused rat heart and to evaluate their links to the intracellular Na+ concentration ([Na+]i) using 87Rb and 23Na nuclear magnetic resonance (NMR) spectroscopy. The rate constant for Rb+ equilibration in the extracellular space was 8.5 times higher than that for the intracellular space. The sensitivity of the rate of Rb+ accumulation in the intracellular space of the perfused rat heart to the inhibitors of the K+ and Na+ transport systems has been analyzed. The Rb+ influx rates were measured in both beating and arrested hearts: both procaine (5 mmol/L) and lidocaine (1 mmol/L) halved the Rb+ influx rate. In procaine-arrested hearts, the Na+,K(+)-ATPase inhibitor ouabain (0.6 mmol/L) decreased Rb+ influx by 76 +/- 24% relative to that observed in untreated but arrested hearts. Rb+ uptake was insensitive to the K+ channel blocker 4-aminopyridine (1 mmol/L). The inhibitor of Na+/K+/2 Cl- cotransport bumetanide (30 mumol/L) decreased Rb+ uptake only slightly (by 9 +/- 8%). Rb+ uptake was dependent on [Na+]i: it increased by 58 +/- 34% when [Na+]i was increased with the Na+ ionophore monensin (1 mumol/L) and decreased by 48 +/- 9% when [Na+]i was decreased by the Na+ channel blockers procaine and lidocaine. Dimethylamiloride (15 to 20 mumol/L), an inhibitor of the Na+/H+ exchanger, slightly reduced [Na+]i and Rb+ entry into the cardiomyocytes (by 15 +/- 5%). 31P NMR spectroscopy was used to monitor the energetic state and intracellular pH (pHi) in a parallel series of hearts. Treatment of the hearts with lidocaine, 4-aminopyridine, dimethylamiloride, or bumetanide for 15 to 20 minutes at the same concentrations as used for the Rb+ and Na+ experiments did not markedly affect the levels of the phosphate metabolites or pHi. These data show that under normal physiological conditions, Rb+ influx occurs mainly through Na+,K(+)-ATPase; the contribution of the Na+/K+/2 Cl- cotransporter and K+ channels to Rb+ influx is small. The correlation between Rb+ influx and [Na+bdi during infusion of drugs that affect [Na+]i indicates that, in rat hearts at 37 degrees C, Rb+ influx can serve as a measure of Na+ influx. We estimate that, at normothermia, at least 50% of the Na+ entry into beating cardiac cells is provided by the Na+ channels, with only minor contributions (< 15%) from the Na+/K+/2 Cl- cotransporter and the Na+/H+ exchanger.  相似文献   

12.
Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG)n-repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca2+]i, the amplitude and shape of depolarization-induced Ca2+ transients, and the content of ATP-driven ion pumps in cultured skeletal muscle cells of wild-type and DMPK[-/-] knockout mice. In vitro-differentiated DMPK[-/-] myotubes exhibit a higher resting [Ca2+]i than do wild-type myotubes because of an altered open probability of voltage-dependent l-type Ca2+ and Na+ channels. The mutant myotubes exhibit smaller and slower Ca2+ responses upon triggering by acetylcholine or high external K+. In addition, we observed that these Ca2+ transients partially result from an influx of extracellular Ca2+ through the l-type Ca2+ channel. Neither the content nor the activity of Na+/K+ ATPase and sarcoplasmic reticulum Ca2+-ATPase are affected by DMPK absence. In conclusion, our data suggest that DMPK is involved in modulating the initial events of excitation-contraction coupling in skeletal muscle.  相似文献   

13.
In order to identify Ca2+ ligands in the putative transmembrane domain 6 of the plasma membrane Ca2+ pump, amino acids Asn879, Met882, Asp883, and Ser887 were singly altered. Asn879, Met882, and Asp883 were chosen because the corresponding amino acids have been proposed as Ca2+ ligands in the sarcoplasmic reticulum Ca2+ pump (Clarke, D. M., Loo, T. W., and MacLennan, D. H. (1990) J. Biol. Chem. 265, 6262-6267). For the alterations, a fully active truncated version of the pump was used, because the interaction of Ca2+ with the pump could be studied without interference from calmodulin binding. The mutants at Asn and Asp did not carry out ATP-supported Ca2+ uptake and formed no acylphosphate from [gamma-32P]ATP, suggesting that, like the corresponding amino acids in the sarcoplasmic reticulum Ca2+ pump, these two are Ca2+ ligands. However, all the mutants at the position of Met882 showed some activity. Indeed, the Met882--> Ile mutant was fully active at a saturating Ca2+ concentration and only the K1/2 for Ca2+ activation was shifted slightly upward. Converting the Met to Thr (which is the corresponding residue in the sarcoplasmic reticulum Ca2+ pump) reduced the activity to 20% of the wild type, further emphasizing the differences between the two Ca2+ pumps. The mutant Ser887--> Ala was expressed in greater amounts than, and had a specific activity about 50% higher than, the wild type, indicating that this serine also could not be a Ca2+ ligand and could not replace the missing Thr at position Met882.  相似文献   

14.
In fishes, catecholamines increase red blood cell intracellular pH through stimulation of a sodium/proton (Na+/H+) antiporter. This response can counteract potential reductions in blood O2 carrying capacity (due to Bohr and Root effects) when plasma pH and intracellular pH decrease during hypoxia, hypercapnia, or following exhaustive exercise. Tuna physiology and behavior dictate exceptionally high rates of O2 delivery to the tissues often under adverse conditions, but especially during recovery from exhaustive exercise when plasma pH may be reduced by as much as 0.4 pH units. We hypothesize that blood O2 transport during periods of metabolic acidosis could be especially critical in tunas and the response of rbc to catecholamines elevated to an extreme. We therefore investigated the in vitro response of red blood cells from yellowfin tuna (Thunnus albacares) and skipjack tuna (Katsuwonus pelamis) to catecholamines. Tuna red blood cells had a typical response to catecholamines, indicated by a rapid decrease in plasma pH. Amiloride reduced the response, whereas 4,4'diisothiocyanatostilbene-2,2'-disulphonic acid enhanced both the decrease in plasma pH and the increase in intracellular pH. Changes in plasma [Na+], [Cl-], and [K+] were consistent with the hypothesis that tuna red blood cells have a Na+/H+ antiporter similar to that described for other teleost red blood cells. Red blood cells from both tuna species were more responsive to noradrenaline than adrenaline. At identical catecholamine concentrations, the decrease in plasma pH was greater in skipjack tuna blood, the more active of the two tuna species. Based on changes in plasma pH, the response of red blood cells to catecholamines from both tuna species was less than that of rainbow trout (Oncorhynchus mykiss) red blood cells, but greater than that of cod (Gadus morhua) red blood cells. Noradrenaline had no measurable influence on the O2 affinity of skipjack tuna blood and only slightly increased the O2 affinity of yellowfin tuna blood. Our results, therefore, do not support our original hypothesis. The catecholamine response of red blood cells from high-energy-demand teleosts (i.e., tunas) is not enhanced compared to other teleosts. There are data on changes in cardio-respiratory function in tunas caused by acute hypoxia and modest increases in activity, but there are no data on the changes in cardio-respiratory function in tunas accompanying the large increases in metabolic rate seen during recovery from exhaustive exercise. However, we conclude that during those instances where high rates of O2 delivery to the tissues are needed, tunas' ability to increase cardiac output, ventilation volume, blood O2 carrying capacity, and effective respiratory (i.e., gill) surface area are probably more important than are the responses of red blood cells to catecholamines. We also use our data to investigate the extent of the Haldane effect and its relationship to blood O2 and CO2 transport in yellowfin tuna. Yellowfin tuna blood shows a large Haldane effect; intracellular pH increases 0.20 units during oxygenation. The largest change in intracellular pH occurs between 40-100% O2 saturation, indicating that yellowfin tuna, like other teleosts, fully exploit the Haldane effect over the normal physiological range of blood O2 saturation.  相似文献   

15.
The increase in cytosolic free Ca2+ concentration ([Ca2+]i) seen in submandibular cells of early postnatal rats following exposure to acetylcholine (ACh) is larger than in cells of adult rats. To elucidate possible reasons for this difference, we compared Ca2+ movements through Ca2+ pumps in both types of cells using Ca(2+)-sensitive fluorescent probe fura-2 and the radiotracer 45Ca2+. Ca2+ release induced by endoplasmic reticulum (ER) Ca(2+)-pump inhibitor thapsigargin (TG) was significantly smaller in neonatal cells than in adult cells, whereas the inositol 1,4,5-trisphosphate (IP3)-elicited Ca2+ release was comparable in both cell types. This suggests that although the size of the IP3-sensitive Ca2+ pool is adequate in immature cells, the activity of TG-sensitive Ca2+ pump in this pool is lower. The activity of the plasma membrane (PM) Ca(2+)-pump, measured by extrusion of 45Ca2+, was also significantly lower in immature cells. These results indicate that both ER and PM Ca2+ pumps may be functionally underdeveloped in immature cells, and that the enhanced increase of [Ca2+]i seen in response to ACh in immature cells may be partially, if not completely, due to a reduced capacity for removal of Ca2+ from the cytosol by active mechanisms.  相似文献   

16.
Plasma membrane Ca2+ ATPases are P-type pumps important for intracellular Ca2+ homeostasis. The extreme C termini of alternatively spliced "b"-type Ca2+ pump isoforms resemble those of K+ channels and N-methyl-D-aspartate receptor subunits that interact with channel-clustering proteins of the membrane-associated guanylate kinase (MAGUK) family via PDZ domains. Yeast two-hybrid assays demonstrated strong interaction of Ca2+ pump 4b with the PDZ1 + 2 domains of several mammalian MAGUKs. Pump 4b and PSD-95 could be co-immunoprecipitated from COS-7 cells overexpressing these proteins. Surface plasmon resonance revealed that a C-terminal pump 4b peptide interacted with the PDZ1 + 2 domains of hDlg with nanomolar affinity (KD = 1.6 nM), whereas binding to PDZ3 was in the micromolar range (KD = 1.2 microM). In contrast, the corresponding C-terminal peptide of Ca2+ pump 2b interacted weakly with PDZ1 + 2 and not at all with PDZ3 of hDlg. Ca2+ pump 4b bound strongly to PDZ1 + 2 + 3 of hDlg on filter assays, whereas isoform 2b bound weakly, and the splice variants 2a and 4a failed to bind. Together, these data demonstrate a direct physical binding of Ca2+ pump isoform 4b to MAGUKs via their PDZ domains and reveal a novel role of alternative splicing within the family of plasma membrane Ca2+ pumps. Alternative splicing may dictate their specific interaction with PDZ domain-containing proteins, potentially influencing their localization and incorporation into functional multiprotein complexes at the plasma membrane.  相似文献   

17.
It has been previously reported that parathyroid cells express endothelin (ET) receptors and secrete ET-1 in an extracellular Ca2+ concentration ([Ca2+]e)-dependent manner. Here, we examined the effects of ET-1 on intracellular signaling and parathyroid hormone (PTH) secretion in dispersed bovine parathyroid (bPT) cells, which comprise several cell types including epithelial and endothelial cells, in two cell lines, the rat parathyroid epithelial (PT-r) and the bovine parathyroid endothelial (BPE-1) cells. An RNA-polymerase chain reaction analysis revealed that both ETA and ETB receptors are expressed in bovine parathyroid tissue and BPE-1 cells, and only the ETA receptor is expressed in PT-r cells. PT-r cells also expressed an inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) receptor, and ionomycin induced an increase in the intracellular Ca2+ concentrations ([Ca2+]i) in a Ca(2+)-deficient medium, indicating the presence of an operative intracellular Ca2+ pool in these cells. In cells bathed in 1 mM [Ca2+]e, ET-1 induced a rapid and transient increase in the Ins(1,4,5)P3 production, which was associated with a similar profile of increase in [Ca2+]i and with a peak response of about 800 nM. No changes in the profile of [Ca2+]i responses were observed in ET-1-stimulated cells in the presence of Ca2+ channel blockers, or in Ca(2+)-deficient medium, indicating that Ca2+ mobilization was not associated with Ca2+ entry. Furthermore, a sustained stimulation with ET-1 induced a decrease in [Ca2+]i below the prestimulatory level in a large population of cells, and the percentage of the cell population that shows the sustained decrease of [Ca2+]i increased in higher ET-1 concentrations. [Ca2+]i in PT-r cells was also controlled by a [Ca2+]e-dependent mechanism that changed [Ca2+]i from 28 to 506 nM in a 0.1-3 mM concentration range with an EC50 of 1.2 mM, which is comparable to that reported for bPT cells. In the same range of [Ca2+]e, PTH secretion from bPT cells was inhibited with an IC50 of 1 mM, and ET-1 increased PTH release in a dose-dependent manner but without affecting the IC50 for the [Ca2+]e-dependent inhibition. Thus, the parathyroid epithelial cells appear to respond to ET-1 in a unique way, and the ET autocrine system can be regarded as a possible mechanism to modulate the sensitivity of [Ca2+]e-dependent PTH release.  相似文献   

18.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

19.
The steady state relation between cytoplasmic Ca2+ concentration ([Ca2+]i) and force was studied in intact skeletal muscle fibers of frogs. Intact twitch fibers were injected with the dextran-conjugated Ca2+ indicator, fura dextran, and the fluorescence signals of fura dextran were converted to [Ca2+]i using calibration parameters previously estimated in permeabilized muscle fibers (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150). In the first series of experiments, [Ca2+]i and isometric force were simultaneously measured during high K+ depolarization. Slow changes in [Ca2+]i and force induced by 15-30 mM K+ appeared to be in equilibrium, as instantaneous [Ca2+]i versus force plot tracked the common path in the rising and relaxation phases of K+ contractures. In the second series of experiments, 2,5-di-tert-butylhydroquinone (TBQ), an inhibitor of the sarcoplasmic reticulum Ca2+ pump, was used to decrease the rate of decline of [Ca2+]i after tetanic stimulation. The decay time courses of both [Ca2+]i and force were dose-dependently slowed by TBQ up to 5 micro M; the instantaneous [Ca2+]i- force relations were nearly identical at >/=1 micro M TBQ, suggesting that the change in [Ca2+]i was slow enough to reach equilibrium with force. The [Ca2+]i-force data obtained from the two types of experiments were consistent with the Hill curve using a Hill coefficient of 3.2-3.9 and [Ca2+]i for half activation (Ca50) of 1.5-1.7 micro M. However, if fura dextran reacts with Ca2+ with a 2.5-fold greater Kd as previously estimated from the kinetic fitting (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150), Ca50 would be 3.7-4.2 micro M. We also studied the [Ca2+]-force relation in skinned fibers under similar experimental conditions. The average Hill coefficient and Ca50 were estimated to be 3.3 and 1.8 microM, respectively. Although uncertainties remain about the precise levels of [Ca2+]i, we conclude that the steady state force is a 3rd to 4th power function of [Ca2+]i, and Ca50 is in the low micromolar range in intact frog muscle fibers, which is in reasonable agreement with results obtained from skinned fibers.  相似文献   

20.
The effect of gamma-aminobutyric acid (GABA) on intracellular Ca2+ concentration ([Ca2+]i) in cultured prenatal rat cortical neurons was investigated using fluorescence imaging. GABA or muscimol, but not baclofen, increased [Ca2+]i in a dose-dependent manner. The GABAA receptor antagonists, bicuculline and picrotoxin, inhibited the GABA response. Furosemide, an inhibitor of the Na+/K+/2Cl- cotransporter, inhibited the GABA response in a noncompetitive manner. Ethacrynic acid, an inhibitor of an ATP-dependent Cl- pump, also inhibited the GABA-induced increased in [Ca2+]i. These results suggest a role for Cl- transport processes in the GABA response. The coapplication of GABA and high K+ led to a non-additive increase in the GABA response. The GABA response was also inhibited by nifedipine, a voltage-gated Ca2+ channel blocker, and abolished by the absence of extracellular Ca2+. Results indicate that the GABA response shares a common pathway of Ca2+ movement with the high K(+)-induced response. These observations suggest that the stimulation with GABA results in Ca2+ influx through voltage-gated Ca2+ channels, and that these effects are dependent on Cl- transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号