首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
稀土催渗对耐蚀氮化的影响   总被引:1,自引:0,他引:1  
针对Q235钢采用常规气体氮化,其耐腐蚀性能日渐不能适应工程应用要求的问题,探索了添加稀土催渗剂对Q235钢进行稀土催渗氮化的方法。详细研究了渗氮工艺对氮化层厚度的影响。测量了渗氮试样表层硬度沿渗层深度的分布及耐蚀性能与渗氮工艺的定量关系。所有实验与观察均为稀土与常规2种渗氮试样在相同条件下平行操作并做对比分析。采用X光荧光谱仪测量了渗层稀土元素的分布。用X射线衍射仪测量了渗层的相组成。用金相显微镜观察了2种渗氮试样的显微组织。研究结果得出,稀土催渗氮化比常规氮化显著增加了氮化层的厚度,其显微硬度与耐腐蚀性能大幅提高。600℃下渗氮2h为最适宜的稀土氮化条件。  相似文献   

2.
乔晓静  张鹏  何虎 《热加工工艺》2014,(10):163-165
对7075铝合金在不同压力下进行真空氮化处理,再对7075铝合金及其氮化样进行铜加乙酸盐雾腐蚀试验,采用失重法和最大腐蚀深度对比分析氮化样与原始样在盐雾环境中的腐蚀情况。通过宏观照片、扫描电镜(SEM)和电化学极化曲线法对渗氮层的腐蚀行为进行了分析研究。结果表明:真空氮化处理提高了7075铝合金的抗均匀腐蚀性能和抗点蚀能力,0.06 MPa时真空氮化层耐蚀性最好。  相似文献   

3.
采用真空渗氮法对6063铝合金进行氮化处理,并对原样和氮化样进行铜加速盐雾腐蚀。采用腐蚀质量损失和最大腐蚀坑深来分析实验组与对照组试样在盐雾环境中的腐蚀情况,并结合扫描电镜(SEM)和电化学极化曲线法对6063铝合金的腐蚀行为进行研究。结果表明:真空氮化提高了6063铝合金的抗腐蚀性,并且在本试验条件下,500和540℃氮化的样品具有最优的综合耐蚀性。  相似文献   

4.
钟厉  王帅峰  门昕皓  韩西 《表面技术》2021,50(12):159-166
目的 探究38CrMoAl钢钛催渗等离子渗氮工艺及机理.方法 在其他工艺参数确定的情况下,通过常规等离子渗氮与钛催渗等离子渗氮处理对比试验,研究38CrMoAl钢钛催渗离子渗氮处理随渗氮时间的变化规律.对试样进行表面硬度、渗层深度检测和显微金相组织与SEM形貌的观察,探究不同处理工艺的催渗效果及钛催渗等离子渗氮的机理.结果 在渗氮的前3 h,渗氮层厚度增加明显,当渗氮时间超过3 h后,其氮化层的厚度便趋于饱和.对比不同时间(3、5、8 h)钛催渗等离子渗氮的表面硬度,差距不大.综合得出38CrMoAl钢在渗氮温度535℃、氨气流量2.0 L/min的工艺参数下,钛催渗等离子渗氮效率最优的渗氮时间为3 h,其表面硬度为1160.8HV,渗层深度为300μm,优于常规离子渗氮8 h的作用效果.结论 38CrMoAl钢试样经过钛催渗等离子渗氮后,渗层的表面硬度和深度明显高于常规离子渗氮.钛的加入可以促使合金元素向表面富集,有利于表面合金化,提升渗氮效率,增强渗氮效果.  相似文献   

5.
采用真空脉冲渗氮的方法对38CrMoAlA钢进行渗氮处理,通过光学显微镜、盐雾腐蚀以及电化学测试对渗氮层的腐蚀性能进行了研究。结果表明,540 ℃真空脉冲渗氮后,38CrMoAlA钢耐盐雾腐蚀性能最佳,渗氮层表面形貌为均匀致密的白亮层,渗氮层与基体结合紧密,在盐雾腐蚀72 h后试样表面基本保持完好,其腐蚀速率为未渗氮试样的22.6%,自腐蚀电流从基体的102.774 µA·cm-2降低到4.893 µA·cm-2,明显提高了渗氮层的耐腐蚀性能。  相似文献   

6.
采用多元共渗软氮化及稀土催渗软氮化两种渗氮方式对5CrNiMo钢热锻模具进行处理,利用金相显微镜、X射线衍射仪,以及HDX-100数字式显微硬度计分析模具表面强化层组织、相结构以及显微硬度,研究渗氮强化处理对5CrNiMo钢热锻模具表面性能和寿命的影响。实验结果表明,经过多元共渗以及稀土催渗两种方式处理的模具,表面强化层厚度相当,约为190μm,渗氮得到的化合物主要由ε相-Fe2-3(N,C),γ'相-Fe4N和Fe3O4所组成。经过多元渗氮软氮化处理的模具渗氮层中Fe2-3N的含量明显高于经过稀土催渗软氮化处理的模具,两种处理方式得到的模具表面硬度分别提高66%和50%。两种处理方式得到的模具寿命分别延长20%和13%,单件产品成本降低8.57%和0.89%。  相似文献   

7.
离子渗氮温度对不锈钢组织及性能的影响   总被引:1,自引:1,他引:1  
对1Cr18NigTi、1Cr13、0Cr18Ni9不锈钢进行了不同温度的离子渗氮.利用金相显微镜及扫描电镜观察了渗氮层显微组织形貌;利用能谱仪测试了渗层中元素的含量及分布情况;利用HVS-1000型数显显微硬度计测定了渗层不同深度处的硬度变化;采用改制的摩擦磨损试验机测试了渗氮层的摩擦磨损特性;利用盐雾腐蚀试验箱测试了渗氮层的耐腐蚀性.结果表明,随渗氮温度增加,3种钢的渗层表层组织中氮化物量减少,高氮浓度的ε相转变为γ'相,440 ℃渗氮形成了氮在基体中的过饱和固溶相;1Cr13不锈钢比1Cr18Ni9Ti及0Cr18Ni9不锈钢的渗层厚;渗层表面硬度降低,但从表面向心部的峰值硬度增加;在一定范围内渗层耐磨性降低,但比未渗氮试样均提高4倍左右;渗层的耐盐雾腐蚀性降低,但440℃的低温渗层的耐蚀性与未渗氮试样差不多.  相似文献   

8.
为了探索提高904L超级奥氏体不锈钢(904LSS)强度同时又不明显降低其耐蚀性的有效方法,采用等离子渗氮及碳氮共渗(软氮化)两种方法氮化904L超级奥氏体不锈钢,并研究其氮化后的表面形貌、显微组织结构以及耐蚀性能。结果表明:经两种渗氮处理后试样表面硬度均有大幅度提高,其中等离子氮化后试样的表层硬度高于软氮化后试样的;渗氮层均由化合物层和扩散层两部分构成;两种渗氮处理后的904L氮化层由于CrN的析出导致耐蚀性有所下降,其中等离子渗氮后的904L耐蚀性下降较小,优于软氮化后试样的。  相似文献   

9.
盐浴渗氮作为一种有效提高金属材料性能的化学热处理技术而被广泛研究,但目前鲜有在电工纯铁上的应用报道,且缺乏在不同环境下的磨损性能研究。采用盐浴氮化对电工纯铁进行处理,采用SEM、显微硬度计、XRD、XPS、盐雾测试箱、电化学工作站、摩擦磨损试验机等测试手段对渗氮层的微观组织、硬度、腐蚀行为及不同环境下的磨损行为进行测试分析。结果表明,经过渗氮处理后在试样表面形成主要为ε-Fe3N、γ′-Fe4N相的渗层,矫顽力和表面硬度随氮化温度和时间的增加逐渐升高,截面硬度呈梯度分布。其中580℃×4.5 h工艺试样具有最优的耐腐蚀性能,自腐蚀电位较纯铁正移,自腐蚀电流密度低于纯铁,电荷转移电阻提升了7.7倍。空气环境下,氮化试样的摩擦因数比纯铁低,氮化试样磨损率只约为纯铁的1/2;去离子水与3.5 wt.%NaCl溶液环境皆有利于降低摩擦因数,但增加了磨损率,3.5 wt.%NaCl溶液环境对材料的加速磨损效果比去离子水更明显。系统研究了盐浴渗氮对电工纯铁腐蚀磨损性能的影响,可为提升海工装备电气开关元器件的服役寿命提供一定理论指导与技术支持。  相似文献   

10.
黄玲  张进  孙才沅  蒲帅 《表面技术》2018,47(6):57-62
目的对45~#强化处理,提高其强韧性和耐磨性。方法采用热反应扩散法(TRD)对45~#基体进行了3种不同的处理,分别为单渗钒、先渗氮后渗钒及先渗钒后渗氮处理。通过扫描电子显微镜、X射线衍射仪进行了微观形貌和物相组成的分析,采用维氏硬度计和旋转摩擦仪对渗层的硬度及耐磨性能进行分析。结果 TRD法处理后,在45~#表面形成一层均匀致密的渗层,其中单渗钒层的厚度为3.86μm,先渗氮后渗钒渗层(先渗氮层)厚度为6.02μm,先渗钒后渗氮渗层(先渗钒层)厚度为8.44μm。单渗钒层的硬度值在1306.6HV左右,而氮化钒渗层的硬度在1549.2~1710.4HV左右,均比处理前试样的硬度(295HV)有明显提高。单渗钒层是由α-Fe和VC相组成,而复合渗层是由VN、α-Fe、Fe_3N和Fe_2C相组成。渗层与基体之间的界面明显,且存在过渡层。单渗钒层试样的平均摩擦系数为0.22,先渗氮层的平均摩擦系数为0.18,先渗钒层的平均摩擦系数为0.20,均小于45~#基体的摩擦系数(为0.29)。结论 TRD法处理后形成的VC、VN渗层能提高钢基体的表面硬度和耐磨性,且钒元素和氮元素渗入的先后顺序对渗层的力学性能有影响。先渗氮层试样效果最佳,往复摩擦实验表明,试样的耐磨性顺序为:先渗氮层先渗钒层单渗钒层45~#基体。  相似文献   

11.
对30CrNi3钢进行了稀土氮碳共渗及气体氮化试验,并与常规渗氮结果进行了对比。利用金相显微镜、显微硬度计对渗氮层深度、表面硬度进行检测并分析。结果表明:稀土催渗不仅可以加快渗氮速度,提高耐磨性,而且可以显著提高渗氮层深度及表面硬度。  相似文献   

12.
研究了不同渗氮时间下钛元素对42CrMo钢常规离子渗氮工艺的作用效果,表征分析了不同渗氮工艺下试样表面的渗层组织及性能。结果表明,钛催渗离子渗氮试样的表面硬度和渗层深度均明显高于常规离子渗氮。在535℃×3 h的工艺条件下,钛催渗离子渗氮试样渗层的表面硬度达到887.4 HV0.2,渗氮层厚度约为400μm。钛元素的加入促进了氮元素的渗透和扩散,在试样表面生成高硬度化合物TiN。相较于相同保温时间下的常规离子渗氮,钛催渗离子渗氮试样表面硬度提高了60 HV0.2,渗层厚度增加了80μm,渗氮效率提升了约25%。与常规离子渗氮相比,钛催渗离子渗氮工艺具有显著优势,不仅有利于改善渗层组织性能,增强渗氮效果,还提高了渗氮效率,使渗氮周期明显缩短。  相似文献   

13.
QPQ技术提高65Mn钢耐腐蚀性的最优工艺参数研究   总被引:1,自引:0,他引:1  
将QPQ技术应用于65Mn钢,利用SEM和盐雾试验箱对QPQ渗层的显微组织和耐腐蚀性进行了分析研究,与未处理试样、发黑试样和盐浴渗氮试样进行对照试验;通过选择典型的氮化温度、氮化时间、氧化温度和氧化时间,设计了一组正交试验,以开始腐蚀时间和腐蚀速度为依据分析了QPQ处理中四种工艺参数对其耐腐蚀性的影响。结果表明:QPQ渗层表面平整,渗层由外到内依次是氧化膜、疏松层、化合物层和扩散层;对照试验中QPQ试样的耐腐蚀性最好,开始腐蚀时间是未处理试样的30倍;QPQ处理获得最高耐腐蚀性的工艺参数为氮化温度600℃,氮化时间1 h,氧化温度410℃,氧化时间40 min,该工艺参数下开始腐蚀时间为45 h,为未处理试样的54倍,腐蚀速度为2.02 g/(m2·h),为未处理试样的16%。  相似文献   

14.
在400℃、8 h、不同气压(80~400 Pa)条件下对304奥氏体不锈钢进行离子渗氮处理。采用扫描电镜(SEM)、X射线衍射仪、显微硬度计及万能摩擦试验机对表面改性后的304奥氏体不锈钢渗层组织、相结构、渗层硬度以及耐磨性进行了测试和分析。结果表明,400℃离子渗氮处理后304奥氏体不锈钢形成了明显的白亮层,即单相S相层;低压对304奥氏体不锈钢离子氮化具有良好的催渗效果,即渗层厚度随气压的减小而增加,在100 Pa条件下,渗层厚度达到最大值51.7μm;渗氮后试样表面硬度达到最大值1100 HV0.01;低温低压离子渗氮能够提高304奥氏体不锈钢耐磨性,80 Pa和100 Pa是提高304奥氏体不锈钢耐磨性的最佳气压。  相似文献   

15.
喷丸对H13钢等离子渗氮处理的影响   总被引:2,自引:0,他引:2  
对经1020℃淬火560℃、610℃和560℃三次回火后的H13钢进行喷丸处理,将喷丸处理后的试样在550℃下等离子渗氮1h.采用光学显微镜、透射电子显微镜、显微硬度仪和X射线衍射仪观察和分析,对比了喷丸和未喷丸试样亚表层的显微结构,等离子渗氮后的渗层深度、截面硬度及表面物相组成.结果表明,在550℃渗氮1h的情况下,喷丸的催渗效果十分明显,喷丸后渗氮层深度从30.4μm增至51.4μm,喷丸形成的高密度胞状位错对催渗起了决定性的作用.喷丸试样的渗氮层与未喷丸试样相比,表面物相的含量不同,表面硬度较高,渗层的硬度梯度稍平缓一些.  相似文献   

16.
针对离子渗氮渗层浅及生产周期长等技术难题,采用预氧化与稀土复合催渗对工程常用结构钢42CrMo进行了离子渗氮。利用显微硬度计、光学显微镜(OM)、扫描电镜(SEM)等对渗氮速率、渗氮层组织、表面形貌等进行了系统的研究。结果表明,经400 ℃×1 h氧化+0.6 cm2/kg(铈表面积/装炉量)稀土的复合催渗工艺具有最佳催渗效果;与无催渗试样相比,优化后的复合催渗不仅提高了渗氮效率,同时减少了脉状氮化物,且降低了渗氮层的硬度梯度。  相似文献   

17.
采用喷丸技术作为催渗方法促进渗氮,将经不同喷丸强度处理的55SiCr弹簧钢试样分别在370℃和390℃进行低温渗氮处理12 h,通过金相显微镜、X射线衍射仪和HV-50Z显微硬度仪,对渗层的显微组织、硬度进行分析对比。结果表明:渗氮后弹簧表面硬度提高20%左右,随喷丸强度的提高渗氮层厚度不断加深,最低喷丸强度弹簧试样和最高喷丸强度弹簧试样其渗氮层厚度相差20μm以上。  相似文献   

18.
H13钢试样经真空热处理后,分别对其进行渗氮和碳氮硫共渗处理,然后浸入700 ℃高温熔融铝液中进行腐蚀试验,并对腐蚀前后试样的截面组织形貌、质量损失及相成分进行了详细分析。结果表明:渗氮试样与碳氮硫共渗试样的渗层界面结合方式相似,渗层光滑致密,与基体分界较为平整。碳氮硫共渗试样的表面化合物区存在Fe3N、Fe2N、FeS、Fe3C相,其中FeS相是典型的密排六方晶体结构,且硬度较高;渗氮试样表面化合物区存在Fe3N、Fe2N相,渗层的表面硬度高于碳氮硫共渗试样。在相同的腐蚀条件下,真空热处理试样的质量损失为7.5 g,质量损失率为21.1%,渗氮试样的质量损失为4.1 g,质量损失率为11.2%,碳氮硫共渗试样的质量损失为0.8 g,质量损失率为2.2%。试样中的铁铝化合物呈锯齿状嵌入基体,厚度分别为184.75、88.56和35.88 μm;经铝液腐蚀后的主要化合物均为Fe2Al5,其中碳氮硫共渗试样由于S、C的加入,可与H13钢基体形成FeS和Fe3C,表现出最佳的耐高温铝液腐蚀性能。  相似文献   

19.
42CrMo钢等离子氮化和水射流喷丸复合处理   总被引:2,自引:0,他引:2  
利用真空脉冲等离子氮化技术,探究等离子氮化处理的最佳工艺参数;而后利用高压水射流喷丸技术研究了氮化前进行水射流喷丸预处理对氮化层的组织和性能的影响。采用光学显微镜、扫描电镜、X射线衍射仪等对氮化层的显微组织、形貌、含氮量、相成分进行检测和分析,采用XRD应力测定仪,表面粗糙度仪,显微硬度仪对渗氮层表面完整性进行了分析。结果表明:等离子氮化工艺最佳温度为530~540℃,等离子氮化后表面完整性(表面残余应力,粗糙度,表层硬度梯度,渗层形貌)得到改善。而经过复合处理使γ'相衍射强度增强,氮化层均匀,渗层厚度增加超过100μm,进一步改善了等离子渗氮层质量和性能。  相似文献   

20.
目的利用脉冲离子渗氮提高石油钻杆内壁性能。方法在钻杆内部插入独立阳极,利用钻杆内部空腔作为渗氮炉体,完成钻杆内壁离子渗氮。通过测定渗氮过程的温度分布并对渗层的硬度分布、耐蚀性及耐磨性能进行测定,分析独立阳极对钻杆内壁渗氮过程、渗层显微组织、耐磨耐蚀性能的影响。结果采用L1700长阳极时的温度场比采用L600短阳极均匀。采用L600短阳极时,随距阳极距离的增加,渗层厚度减小。采用L1700贯穿长棒时,渗层形貌和厚度呈对称分布,渗氮层的显微硬度由表及里逐渐降低。两种不同阳极相比,L1700硬度变化更平缓。盐雾腐蚀及摩擦磨损试验表明,采用L600短阳极时,随着距离的增大,性能下降,而采用L1700长阳极时,性能呈对称分布,中间位置性能最低。结论采用内置独立阳极的方法可以实现钻杆内壁离子渗氮,独立阳极的影响范围约为260 mm。采用L1700长阳极渗氮后,表层最高硬度可达848.0HV_(0.2),渗层最小厚度0.33mm。L1700试样腐蚀速率最大为1.6917×10~(-5)g/(mm~2·h),磨损率最大为1.5513×10~(-7) mm~3/(N·m)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号