首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zirconia nanoparticles synthesized by the sol–gel method were surface modified by the coupling agent, 3-(trimethoxy silyl) propyl methacrylate (MSMA), containing C=C bonds. These particles were then UV-cured together with the hexa-functional monomer, dipentaethritol hexaacrylate (DPHA), to prepare transparent coatings that exhibited antistatic property on plastic substrates. FTIR and solid 29SiNMR were used to analyze the chemical bonds in the formed particles and coatings. Dynamic light scattering measurement of the modified ZrO2 sol indicated a relatively small particle size distribution, 1.5–20 nm, with a maximum intensity at ~5.5 nm. These particles dispersed uniformly in the organic host, poly(DPHA), as was manifested by the high resolution SEM images of the coatings. Antistatic performance of the coatings was examined based on the surface resistivity measurements. A resistivity of 7.74 × 108 Ω/□ suited to common antistatic applications could be attained for coatings containing 10% inorganic component. In addition, all of the prepared coatings were very hard with pencil hardness 7H–8H, and they attached perfectly to the PMMA substrate according to the peel test.  相似文献   

2.
A novel method of nano‐SiO2/poly(methyl methacrylate)(PMMA)‐polyurethane(PU) composite particles modifying epoxy resin is reported. The composite particles with the obvious core‐shell structure were prepared by emulsion polymerization of PMMA and PU prepolymer on the surface of nano‐SiO2. The diameter of the composite particles was 50–100 nm with dark core SiO2 (30–60 nm) and light shell polymer of PMMA and PU (20–30 nm); moreover, PU was well distributed in PMMA with about 10 nm diameter. After nano‐SiO2 was encapsulated by PMMA and PU, the Si content on the surface decreased rapidly to 2.08% and the N content introduced by PU was about 1.27%. The ratio of polymer to original nano‐SiO2 (fp), the grafting ratio of polymer to original nano‐SiO2 (fr) and the efficiency grafting ratio of polymer (fe) were, respectively, about 116.7%, 104.4%, and 89.5%. The as‐prepared composite particles were an effective toughness agent to modify epoxy resin, and the impact strength of the modified epoxy resin increased to 46.64 kJ m?2 from 19.12 kJ m?2 of the neat epoxy resin. This research may enrich the field of inorganic nanoparticles with important advances toward the modification for polymer composite materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41919.  相似文献   

3.
Colloidal silica nanoparticles synthesized from tetraethoxysiliane via a sol–gel process were surface modified by 3-(trimethoxysilyl)propyl methacrylate (MSMA) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS). MSMA acted both as a C=C provider and a coupling agent, whereas HMDS was used to prevent particle aggregation and engender hydrophobicity. The modified silica particles (HMSiO2) were UV-cured together with the crosslinking agent, dipentaerythritol hexa-acrylate (DPHA) to form coatings on poly(methyl methacrylate) (PMMA) substrates. Dynamic light scattering of the synthesized sols indicated that the average size of HMSiO2 was ca. 10 nm, consistent with that obtained from TEM imaging. FTIR spectroscopic analyses demonstrated chemical attachment of HMDS to the silica particles. The cured coatings were characterized in terms of water contact angle, light transmittance, hardness, abrasion resistance, and surface morphology. It was found that hydrophobicity of the coatings increased while light transmittance and hardness decreased with increasing HMDS content. DPHA played the role of providing mechanical strength and adherence; however, the coatings became lightly hazy when the weight ratio of DPHA/silica fell in the range 0.3–0.7. In the optimal case, a hard coating (4H) with water contact angle of 108° and transmittance of ~100% (vs PMMA) had been obtained at the DPHA content of 10 wt%.  相似文献   

4.
Photofunctional polymer as silane coupling agent (PFD) was prepared by free radical copolymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC) and methyl methacrylate (MMA) in the presence of (3‐mercaptopropyl)trimethoxysilane (MPMS) as chain transfer agent. Next, silane (SiO2; the average diameter Dn = 192 nm) nanoparticles was surface‐modified with PFD and 3‐(trimethoxysilyl)propyl methacrylate (γ‐MPS) by covalent bond formed between silanol groups and silane coupling agents. The PFD and γ‐MPS functionalizations changed the silica surface into hydrophobic nature and provided grafting initiation sites and methacrylate terminal groups respectively. We performed the construction of hybrid nanocomposites by using these modified SiO2 nanoparticles. It was found from electron microscopy observations that SiO2 particles were packed into repeating cubic arrangements in a poly(methyl methacrylate) (PMMA) matrix such as colloidal crystals. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Cu2+ can oxidize amines to generate radicals to initiate radical polymerization of electron‐deficient monomers under mild conditions. Here, CuSO4‐catalyzed redox‐initiated radical polymerizations of methyl methacrylate from amino‐functionalized TiO2 nanoparticles (TiO2‐NH2 nanoparticles) was performed to prepare TiO2 nanoparticles grafted with poly(methyl methacrylate) (TiO2g‐PMMA hybrid nanoparticles) in dimethylsulfoxide or N,N‐dimethylformamide at 90°C. Infrared spectroscopy, thermogravimetric analysis, and X‐ray photoelectron spectroscopy confirmed the presence of the grafted PMMA and the grafting yield was about 50 wt%. Microscopy and particle‐size analysis indicated that TiO2g‐PMMA nanoparticles had a good affinity to organic media. Because only aminyl radical (? NH?) on TiO2 nanoparticles formed in Cu2+‐amine redox‐initiation step, there was no free PMMA chains formed during polymerization. Thus, our protocol provides a facile strategy to prepare inorganic/organic hybrid nanoparticles via one‐pot Cu2+‐amine redox‐initiated free radical polymerization. POLYM. ENG. SCI., 55:735–744, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
Colloidal silica nanoparticles synthesized from tetraethoxysilane via a sol–gel process were surface-modified first by 3-(trimethoxysilyl)propyl methacrylate, and then by trimethylethoxysilane (TMES). The former agent acts both as a coupling agent and as a C=C provider, whereas the latter agent is used to prevent particle aggregation and to increase hydrophobicity of the coating. The modified silica particles were UV-cured together with the monomer, 2-hydroxyethyl methacrylate (2-HEMA), and the crosslinking agent, dipentaerythritol hexaacrylate (DPHA), to form highly transparent hard coatings on plastic (PMMA and PET) substrates. Both differential scanning calorimetric and thermal gravimetric analyses of the hybrid materials indicated enhanced thermal stability with respect to the neat HEMA–DPHA copolymer. Furthermore, due to the incorporation of TMES, hydrophobicity of the hybrid coating increased considerably with increasing modified silica content. In the extreme case, an antiabrasive hard coating (7H on PMMA) with a water contact angle of 99° was obtained at the silica content of 15 wt%.  相似文献   

7.
Hybrid particles of polyurethane (PU) containing a number of small poly(methyl methacrylate) (PMMA) nanoparticles inside were prepared using glycidyl methacrylate (GMA) monomer as a linker between PU and PMMA; the resulting polymers were poly (urethane‐glycidyl methacrylate‐methyl methacrylate) (PUGM). It was found that the average particle size (Dp) of the PU particles decreased by the inclusion of PMMA particles possibly owing to the low‐solution viscosity of PU. However, Dp of the PUGM hybrid particles increased with increasing the number of covalent bonds between PMMA and PU, which might be due to decreasing the amount of ionic groups per PU chain. Subsequently, the tensile properties of the films made of the PUGM hybrid particles were investigated. It was observed that the modulus of the PU films increased upon the addition of PMMA particle because of a filler effect. In addition, it was seen that the modulus of PUGM hybrid films increased further with increasing the number of covalent bonds. This was attributed to “restricted mobility” of PU chains anchored to the PMMA particles. It was also observed that the tensile strength changed only slightly for PUGM particles, suggesting that the PU matrix was probably responsible for the necking behavior of the films. The elongation of the samples was found to depend on both the presence of covalent bonds between the PMMA particles and PU matrix and the reduced mobility of the PU chains anchored to PMMA particles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
This work aims at preparing and characterizing poly(butyl acrylate) (PBA)—laponite (LRD) nanocomposite nanoparticles and nanocomposite core (PBA‐LRD)‐shell poly(methyl methacrylate) (PMMA) nanoparticles, on the one hand, and the morphology and properties of poly(lactic acid) (PLA)‐based blends containing PBA‐LRD nanocomposite nanoparticles or (PBA‐LRD)/PMMA core–shell nanoparticles as the dispersed phase, on the other hand. The PBA and (PBA‐LRD)/PMMA nanoparticles were synthesized by miniemulsion or emulsion polymerization using LRD platelets modified by 3‐methacryloxypropyltrimethoxysilane (MPTMS). The grafting of MPTMS onto the LRD surfaces was characterized qualitatively using FTIR and quantitatively using thermogravimetric analysis (TGA). The amounts of LRD in the PBA‐LRD nanocomposites were characterized by TGA. The PBA/PMMA core–shell particles were analyzed by 1H‐NMR. Their morphology was confirmed by SEM and TEM. Mechanical properties of (PBA‐LRD)/PLA blends and (PBA‐LRD)/PMMA/PLA ones were tested and compared with those of the pure PLA, showing that core–shell particles allowed increasing impact strength of the PLA while minimizing loss in Young modulus and tensile strength. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
10.
Polymethyl methacrylate (PMMA) was introduced onto the surface of silica nanoparticles by particle pretreatment using silane coupling agent (γ‐methacryloxypropyl trimethoxy silane, KH570) followed by solution polymerization. The modified silica nanoparticles were characterized by Fourier‐transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). Sedimentation tests and lipophilic degree (LD) measurements were also performed to observe the compatibility between the modified silica nanoparticles and organic solvents. Thereafter, the PMMA slices reinforced by silica‐nanoparticle were prepared by in situ bulk polymerization using modified silica nanoparticles accompanied with an initiator. The resultant polymers were characterized by UV–vis, Sclerometer, differential scanning calorimetry (DSC). The mechanical properties of the hybrid materials were measured. The results showed that the glass transition temperature, surface hardness, flexural strength as well as impact strength of the silica‐nanoparticle reinforced PMMA slices were improved. Moreover, the tensile properties of PMMA films doped with silica nanoparticles via solution blending were enhanced. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
The antistatic coatings were prepared by using rare earths modified BaTiO3 powders as conductive fillers instead of the traditional metal additives. The composition and preparation technology of the antistatic coatings were researched. The effects of thinner, curing agent, dispersant, and conductive fillers on surface resistance and performances of the antistatic coatings were studied. The determined composition of the antistatic coatings was that of epoxy resin 10.00?g with curing agent 13%, BaTiO3 powders 5%, dispersant 2%, and thinner 4?ml?g?1. FTIR and SEM analyses illustrated that the dispersant agent and ultrasonic can make modified BaTiO3 powders in the coatings to disperse completely. The parameters of antistatic coatings were as following: surface resistance is 1.18?×?1010?Ω, dry time is 6.0?h, solid content is 94.0%, stiffness is 0.419, viscosity is 255?s, adhesive force is 3, and flexibility is 2. The antistatic coatings were prepared by using rare earths modified BaTiO3 powders will be prospective candidates for reducing static electricity.  相似文献   

12.
Van Giang Ngo  Christine Leroux 《Polymer》2009,50(14):3095-3297
Surface of titania nanoparticles (TiO2) was modified by a coupling agent as 3-(trimethoxysilyl)propyl methacrylate (MPS) to form TiO2-MPS polymerizable particles. Methyl methacrylate (MMA) and tert-butyldimethylsilyl methacrylate (MASi) were radically polymerized through the immobilized vinyl bond on the surface in the presence of the reversible addition-fragmentation chain transfer (RAFT) agent 2-cyanoprop-2-yl dithiobenzoate using 2,2′-azobisisobutylnitrile (AIBN) as an initiator. FTIR spectroscopy confirmed the presence of the coupling molecule and the methacrylate groups on the surface. Thermogravimetric analysis and elemental analysis revealed a surface coverage of the coupling molecule of 2.0 wt%. TGA measurements showed that grafted PMMA and PMASi were accounted for 10% and 4.8% of the particle mass, respectively. 1H NMR and SEC were used to verify the livingness of the polymerization. Transmission electron microscopy (TEM) was used to study the morphology of the particles before and after the surface grafting.  相似文献   

13.
Powder coating for dry coating technique of paper as the promising method has attracted more and more attentions in recent years due to its advantages in reducing the dosage of water and saving energy compared with conventional coating. This study focused on the in situ polymerization of methyl methacrylate (PMMA) under a water‐free condition in supercritical carbon dioxide in the presence of inorganic kaolin. The effects of varying the concentrations of the monomer, initiator, and stabilizer on the molecular weight and morphology of the resultant PMMA were investigated and discussed. Then the powder coating was systematically evaluated and characterized by gel permeation chromatography, scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Meanwhile, the feasibility of manufacturing PMMA/kaolin powder coatings was explored, and the mechanism of polymerization and the thermal degradation kinetics of powder coating were studied. The experimental results showed that the properties of PMMA as a film former were suitable with the molecular weight and narrow molecular weight distribution close to that in conventional coating when the concentration of monomer was about 10 wt %, concentration of initiator ~1–1.5 wt % and stabilizer about 10 wt % with respect to monomer. Moreover, the interfacial bonds and dispersion situation of polyacrylic ester‐based water‐free powder coating particles were fairly well, the powder coating possesses good film‐forming property combined with outstanding thermal‐stability performance. The combination of these characteristics makes PMMA/kaolin powder coating an excellent candidate for dry coating technique of paper applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42439.  相似文献   

14.
Here, nanocomposite particles with three domains including magnetite nanoparticles, poly(N‐octadecyl methacrylate) (PODMA) or poly(N‐octadecyl methacrylate‐co‐1‐vinylimidazole) (P(ODMA‐co‐VIMZ)), and gold nanoparticles were prepared. Fe3O4 nanoparticles with narrow particle size distribution were prepared through a synthetic route in an organic phase in order to achieve good control of the size and size distribution and prevent their aggregation during their preparation. These magnetite nanoparticles, ~ 5 nm in size, were then encapsulated and well‐dispersed in PODMA and P(ODMA‐co‐VIMZ) matrices via a miniemulsion polymerization process to obtain the corresponding nanocomposite particles. The results revealed that Fe3O4 nanoparticles were encapsulated and did not migrate towards the monomer/water interface during polymerization. The resulting latex was used as a precursor for the adsorption of Au3+ ions on the surface of the polymeric particles and subsequent reduction to produce Fe3O4/P(ODMA‐co‐VIMZ)/Au nanocomposite particles. The morphology of the particles from each step was fully characterized by TEM and AFM, and the results of DLS analysis showed their size and size distribution. Measurement of magnetic properties illustrated the superparamagnetic characteristic of the products and it was observed that the encapsulation process and deposition of gold had no effect on the magnetic properties of the resulting particles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
The purpose of this study was to study the mechanical properties of poly(methyl methacrylate) (PMMA)‐based bone cement incorporated with hydroxyapatite (HA) nanoparticles after surface modification by poly(methyl methacrylate‐co‐γ‐methacryloxypropyl timethoxysilane) [P(MMA‐co‐MPS)]. PMMA and P(MMA‐co‐MPS) were synthesized via free‐radical polymerization. P(MMA‐co‐MPS)‐modified hydroxyapatite (m‐HA) was prepared via a dehydration process between silane and HA; the bone cement was then prepared via the in situ free‐radical polymerization of methyl methacrylate in the presence of PMMA and P(MMA‐co‐MPS)–m‐HA. Fourier transform infrared (FTIR) spectroscopy, 1H‐NMR, and gel permeation chromatography were used to characterize the P(MMA‐co‐MPS). Thermogravimetric analysis and FTIR were used as quantitative analysis methods to measure the content of P(MMA‐co‐MPS) on the surface of HA. The effect of the proportion of m‐HA in the PMMA‐based bone cement on the mechanical properties was studied with a universal material testing machine. A 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay was also carried out to determine the cytotoxicity of the composite bone cement. The results showed that the surface modification of HA greatly improved the interaction between the inorganic and organic interfaces; this enhanced the mechanical properties of bone cement for potential clinical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40587.  相似文献   

16.
A series of sol–gel‐derived organic–inorganic hybrid materials that comprise organic poly(methyl methacrylate) (PMMA) and inorganic silica (SiO2) was successfully prepared using aniline as an organic base catalyst to catalyze the sol–gel reactions of tetraethylorthosilicate (TEOS). Aniline was adopted not only as a catalyst but also as a dispersing agent during the preparation of the hybrid materials. The as‐prepared hybrid materials were then characterized using transmission electron microscopy, SEM/energy dispersive X‐ray spectroscopy and Fourier transform infrared spectroscopy. The characteristic temperatures (including Td and Tg) of the hybrid materials slightly exceeded those of neat PMMA, as revealed from thermogravimetric analysis and differential scanning calorimetry evaluations. Studies of the protection against corrosion demonstrated that the hybrid coatings all improved the protection performance on cold‐rolled steel coupons relative to that of neat PMMA coatings, according to measurements of electrochemical corrosion parameters. Additionally, incorporating silica particles into the polymer may effectively reduce the gas permeability of the polymer membrane. Reducing the size of silica particles (at the same silica feeding) further improved the gas barrier property. Optical clarity studies indicated that introducing silica particles into the PMMA matrix may slightly reduce the optical clarity of the films/membranes, as determined by UV‐visible transmission spectroscopy. The contact angle of H2O of the hybrid films increased with the amount of aniline. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

17.
pH‐Responsive amphiphilic branched copolymers were prepared from poly(ethylene glycol) methyl ether methacrylate (PEGMA), 2‐(diethylamino)ethyl methacrylate (DEAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA), and ethylene glycol dimethacrylate (EGDMA) utilizing a thiol‐modified free radical polymerization. The molecular structures of copolymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR) and triple‐detection gel permeation chromatography (tri‐GPC). The aqueous solution behaviors of the obtained copolymers were investigated by dynamic light scattering (DLS). The DLS data showed that about 16 nm polymer particles comprising of hydrophobic poly(tert‐butylamino)ethyl methacrylate (PtBAEMA) and poly(diethylaminoethyl methacrylate (PDEAEMA) core, hydrophilic PEGMA corona were formed above pH 8. With the decrease of pH from 8 to 6, a dramatic increase in the hydrodynamic radius of polymer particles from 16 nm to 130 nm was observed resulting from the protonation of the PDEAEMA segment. Moreover, in vitro drug release behaviors of the resulting polymer assemblies at different pH values were also investigated to evaluate their potential as sustained release drug carriers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42183.  相似文献   

18.
Micron‐size functional crosslinked poly(methyl methacrylate) (PMMA) particles with narrow size distribution in the range of 1~5 µm were prepared by dispersion copolymerization in polar media with poly(N‐vinylpyrrolidone)(PVP) as steric stabilizer, 2,2′‐azobisisobutyronitrile(AIBN) as initiator and ethylene glycol dimethylacrylate (EGDMA) as crosslinking agent. The effects of functional comonomer acrylic acid (AA) concentration, contents in AIBN, EGDMA and PVP, media polarity as well as reaction temperature on the particle size and size distribution were investigated. Particle size initially increased, and then decreased with increasing AA concentration in the range of 0.7~3.5 mol l?1, having a maximum of 5.01 µm at the concentration of 2.1 mol l?1, while size distribution became broader. This was regarded as the result of different roles of PAA in the process. Particle size increased with decreasing media polarity and stabilizer concentration, and with increasing initiator concentration and reaction temperature. The resulting particle shapes were observed by transmission electron microscopy and the presence of carboxyl groups on the surface of the particles was confirmed by Fourier‐transform infrared spectroscopy. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Poly (methyl methacrylate)/boron nitride (PMMA/BN) composites were prepared by dispersing BN particles into methyl methacrylate monomer phase by bulk polymerization method. BN particles modified with silane coupling agent, γ‐methacryloxypropyl trimethoxy silane, were characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. Effects of modified BN particle content on thermal conductivity were investigated, and the experimental values were compared with those of theoretical and empirical models. With 16 wt% of BN particles, the thermal conductivity of the composite was 0.53 W/(m·K), 1.8 times higher than that of pure PMMA. The microstructures of the PMMA/BN composites were examined by scanning electron microscopy, energy‐dispersive X‐ray analysis, and transmission electron microscopy. Dynamic mechanical analysis and thermogravimetric analysis traces also corroborated the confinement of the polymer in an inorganic layer by exhibiting an increase in glass‐transition temperatures and weight loss temperatures in the thermogram. Mechanical properties and electrical insulation property of the PMMA/BN composites were also determined. These results showed that PMMA/BN composites may offer new technology and business opportunities. POLYM. COMPOS., 36:1675–1684, 2015. © 2014 Society of Plastics Engineers  相似文献   

20.
Poly(lactide)/poly(methyl methacrylate)/silica (PLA/PMMA/SiO2) composites were fabricated using a twin‐screw extruder. Nanosilica particles were incorporated to improve the toughness of the brittle PLA, and a chain extender reagent (Joncryl ADR 4368S) was used to reduce the hydrolysis of the PLA during fabrication. Highly transparent PLA and PMMA were designated to blend to obtain the miscible and transparent blends. To estimate the performance of the PLA/PMMA/SiO2 composites, a series of measurements was conducted, including tensile and Izod impact tests, light transmission and haze measurements, thermomechanical analysis, and isothermal crystallization behavior determination. A chain extender increases the ultimate tensile strength of the PLA/PMMA/SiO2 composites by ~43%, and both a chain extender and nanosilica particles increase Young's modulus and Izod impact strength of the composites. Including 0.5 wt % nanosilica particles increase the elongation at break and Izod impact strength by ~287 and 163%, respectively, compared with those of the neat PLA. On account of the mechanical performances, the optimal blending ratio may be between PLA/PMMA/SiO2 (90/10) and PLA/PMMA/SiO2 (80/20). The total light transmittance of the PLA/PMMA/SiO2 composites reaches as high as 91%, indicating a high miscible PLA/PMMA blend. The haze value of the PLA/PMMA/SiO2 composites is less than 35%. Incorporating nanosilica particles can increase the crystallization sites and crystallinities of the PLA/PMMA/SiO2 composites with a simultaneous decrease of the spherulite dimension. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42378.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号