首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Packaging materials are decisive to preserve the quality and nutritional value of food. Polylactide (PLA) is a biodegradable polymer with adequate mechanical properties for packaging applications, but its moderate oxygen barrier properties and high UV light transmission hamper its performance as packaging for oxygen- and light-sensitive products. Bixin, a carotenoid with coloring and antioxidant character, was used to improve the light barrier of PLA films plasticized or not with acetyl tri-butyl citrate (ATBC). The films were subjected to thermal treatment mimicking polymer processing temperatures. Despite more than 74 wt% of bixin degraded during heat treatment, films were still blocking up to 95% of UVA and 90% of UVB transmission. Plasticizing PLA with ATBC accelerated up to six times the bixin release into a food simulant, which allowed to reach relevant concentrations for food preservation. In conclusion, bixin is a promising natural antioxidant and UV-shielding additive of biodegradable packaging.  相似文献   

2.
Nowadays, environmental hazards caused by plastic wastes are a major concern in academia and industry. Utilization of biodegradable polymers derived from renewable sources for replacing common petroleum‐based plastics is a potential solution for reducing the problem. In this regard, starch has become one of the most promising alternatives to non‐biodegradable polymers for depleting plastic waste thanks to its low expense, abundance, renewability and biodegradability. However, the main drawbacks of starch are its poor processability, weak mechanical properties and severe hydrophilicity. In this work, thermoplastic starch (TPS) samples have been prepared using glycerol and sorbitol as co‐plasticizers in a laboratory co‐rotating twin screw extruder. Based on the mechanical test results, glycerol caused higher elongation to break but had lower tensile strength and elastic modulus compared to sorbitol plasticized starch. Fourier transform infrared spectroscopy and DSC results indicated that the hydrogen bond interaction between starch chains and plasticizers could be improved by replacing glycerol by sorbitol, which resulted in higher resistance against retrogradation proved by XRD results. TGA illustrated that the higher the sorbitol to glycerol ratio was, the more stable was the TPS. Using a proper amount of plasticizers (42 wt% total plasticizer, sorbitol to glycerol ratio 2:1) led to the preparation of a TPS sample with optimized properties including enhanced mechanical properties, high thermal stability, strong hydrogen bond formation and high resistance against retrogradation. © 2017 Society of Chemical Industry  相似文献   

3.
Studies on the moisture sorption characteristics of poly(vinyl alcohol)/starch blends for water activity (aw) values of 0.1–0.9 were performed at 27°C. The equilibrium moisture content at different aw values was used to fit different sorption isotherm models proposed in the literature. The ranges of aw applicable for the different sorption isotherms were reported. The model constants of the sorption equations were determined by linear fitting. The value of the coefficient of determination (0.98 ± 0.01) confirmed the goodness of fit of the equations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3874–3881, 2003  相似文献   

4.
Breathable films, which find in variety of product applications, are conventionally made using mineral porogens such as calcium carbonate (CaCO3). This article addresses a novel biodegradable and highly breathable film without inorganic porogens. Unexpectedly, a thermoplastic cross‐linked natural polymer (corn starch) was used successfully to create tortuous passages for film breathability. This concept was demonstrated using two types of thermoplastic cross‐linked corn starches as porogens and contrasted to control samples: native corn and chemically cross‐linked starches, respectively. The films discussed had increased breathability and mechanical properties relative to the control samples. The film morphology reveals that filler was irregular when thermoplastic starch or CaCO3 was used. The difference in filler from chemically modified cross‐linked starch and thermoplastic cross‐linked starch was observable as well. It is believed that spherical particles provided by thermoplastic cross‐linked starch helps film debonding and porosity during the film stretch processes. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41016.  相似文献   

5.
Concern about environmental issues has motivated research into the development of biodegradable packaging from renewable sources. Natural polymers such as starch constitute a good alternative for diminishing the use of nonbiodegradable and nonrenewable components in the packaging industry. However, depending on the botanical source, films with different properties are formed. The aim of this study was to evaluate the film‐forming capacity of different starch sources (cassava, corn, potato, and wheat) by casting with starch contents from 2 to 6%. Principal component analysis methodology was used to evaluate the correlation between the formulations and their physicochemical and mechanical properties. It was not possible to produce continuous films based on potato starch, probably because of its very low amylose content (10%). The corn‐, cassava‐, and wheat‐starch‐based films were characterized by their thicknesses (0.06–0.22 mm), moisture contents (19–26%), water solubilities (13.7–26.5%), water‐vapor permeabilities (WVPs; 0.19–0.48 g mm h?1 m?2 kPa?1), wettabilities (35–106°), biodegradabilities in soil, and thermal and mechanical properties (tensile strength = 1.9–6.7 MPa, elongation = 41–166%, and Young's modulus = 8–127 MPa). The wheat starch films presented higher WVPs and lower mechanical properties. The cassava starch films presented lower wettabilities and good mechanical properties; this suggested that their use in packaging for products, such as fruits and vegetables, with higher water activities could be feasible. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46564.  相似文献   

6.
The wettability and crystallization behaviors of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV)‐graft‐polyacrylamide (PAM) films were studied. X‐ray photoelectron spectroscopy analyses illustrated that about 62 atom % of the total polar functionalities on the grafted film with 17% grafting percentage (GP) was amide groups. Wide‐angle X‐ray diffraction results suggest that grafted PAM induced defects in PHBV crystals and influenced their crystal structure. Differential scanning calorimetry (DSC) spectra showed the two melting regions, 60–90 and 145–170°C, of the imperfect PHBV crystals of the grafted films. Grafted PAM could suppress the recrystallization of PHBV, which was consistent with the polarizing optical microscopy results, in which the maximum PHBV spherulite diameter decreased from 350 μm for the PHBV film to 50 μm for the film with 53% GP. In addition, DSC studies revealed that the crystallinity of the grafted films decreased with increasing GP, which facilitated the diffusion of water into the films. The water contact angle of grafted films decreased and the water‐swelling percentage increased as GP went up. These results demonstrate the potential of PHBV‐g‐PAM for wettable surface constructs in tissue engineering applications. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

7.
Response surface methodology was used to analyze the effects of the enzyme level (X2) and glycerol level (X1) on objective attributes [water solubility index (WSI), water absorption index (WAI), and maximum loading (Y3)] of a cornstarch/poly(β‐hydroxybutyrate‐co‐valerate) blended composite. A rotatable central composite design was used to develop models for the objective responses. The experiments were run at barrel temperatures of 160, 160, 165, and 165°C, with a screw speed of 40 rpm and complete feeding (filling ratio = 1). Responses were most affected by changes in X2 and to a lesser extent by X1. Individual contour plots of the different responses were overlaid, and regions meeting the optimal WSI of 8.73%, WAI of 3.94 g of gel/g of dry weight, and Y3 of 304.17 N were established at an X2 of 5.43 g and an X1 of 120.79 mL. These predicted values for the optimal process conditions were in good agreement with the experimental data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
This study was aimed at the modulation of poly(lactic acid) (PLA) properties by the addition of both a low‐molecular‐weight plasticizer, acetyl tributyl citrate (ATBC), and a biodegradable aliphatic–aromatic copolyester, poly(butylene adipate‐co‐terephthalate) (PBAT). PLA/PBAT, PLA/ATBC, and PLA/PBAT/ATBC mixtures with 10–35 wt % ATBC and/or PBAT were prepared in a discontinuous laboratory mixer, compression‐molded, and characterized by thermal, morphological, and mechanical tests to evaluate the effect of the concentration of either the plasticizer or copolyester on the final material flexibility. Materials with modulable properties, Young's modulus in the range 100–3000 MPa and elongation at break in the range 10–300%, were obtained. Moreover, thermal analysis showed a preferential solubilization of ATBC in the PBAT phase. Gas permeability tests were also performed to assess possible use in food packaging applications. The results are discussed with particular emphasis toward the effects of plasticization on physical blending in the determination of the phase morphology and final properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
We report a systematic investigation on the structure–property relationships in glycerol-plasticized poly(vinyl alcohol) (PVA)/cassava starch blends prepared via solution casting. In particular, PVA mixed with native, low-oxidized, high-oxidized, and pregelatinized cassava starches were characterized by means of SEM, XRD, FTIR, thermal analysis and mechanical testing and the immiscible systems were received. Burial tests over a period of several days suggested the preferential degradation of the starch and glycerol component (as indicated by the absence of FTIR signatures of those components) and the amorphous phase of PVA (as indicated by the enhanced crystallinity index of the degraded samples). The rheological properties of the blends seem to dictate their morphological characteristics that, in turn, have a profound impact on their mechanical properties. In that sense, the study highlights promising strategies for the development of a new family of polymeric materials that combine their biodegradable nature within superior mechanical properties. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48848.  相似文献   

10.
The purpose of this article is to investigate the effects of nano‐tianium dioxide (nano‐TiO2) on the high‐amylose starch/polyvingl alcohol (PVA) blend films prepared by a solution casting method. The results show that at the concentration of 0.6% of nano‐TiO2, the film demonstrated the best tensile strength at 9.53 MPa, and the elongation at break was noted as 49.50%. The optical transmittance of the film was decreased and the water resistance was improved with further increase of the concentration of nano‐TiO2. Using the techniques of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and field‐emission scanning electron microscopy (SEM), the molecular and the crystal structures of the films were characterized. The results indicate that the miscibility and compatibility between high‐amylose starch and PVA were increased with the addition of nano‐TiO2 into the films due to the formation of hydrogen and C? O? Ti bonds. The antimicrobial activities of the blend films were also explored. The results show that there were inhibitory zones around the circular film disc, which is attributable to the addition of nano‐TiO2. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42339.  相似文献   

11.
Moisture‐sorption characteristics of starch/low‐density polyethylene (LDPE) blends were carried out at 27°C for water activity (aw) from 0.1 to 0.9. The sorption data were used to fit six different sorption isotherm models proposed in the literature. The model constants were determined by linear fitting of the sorption equations. The ranges of applicability of water activity for the isotherm models reported in the article lies between 0.1 and 0.4 (monomolecular layer) for the BET model and between 0.3 and 0.9 (multimolecular and capillary condensation layers) for other models. The value of the coefficient of determination (R2 = 0.97 ± 0.02) confirms the linear fitting of the equations studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1193–1202, 2002; DOI 10.1002/app.10417  相似文献   

12.
Poly(butylene adipate‐co‐terephthalate) (PBAT) nanocomposites films are prepared by a solution intercalation process using natural montmorillonite (MMT) and cetyltrimethylammonium bromide (CTAB)‐modified montmorillonite (CMMT). Cation exchange technique has been used for modification of MMT by CTAB and characterized by Fourier transform infrared analysis, thermo‐gravimetric analysis, and X‐ray diffraction (XRD) studies. CMMT gives better dispersion in the PBAT matrix than MMT and is confirmed by XRD and transmission electron microscopy. Because of better compatibility of CMMT, water vapor transmission rate of PBAT decreases more in the presence of CMMT than MMT. The biodegradability of PBAT and its nanocomposite films are studied in compost and from the morphological analysis it is apparent that the PBAT/CMMT shows a lower biodegradation rate in comparison to the PBAT/MMT. The antimicrobial activity of PBAT and its nanocomposite films is tested by an inhibition zone method. Because of the presence of the quaternary ammonium group of CTAB‐modified MMT, PBAT/CMMT nanocomposites show adequate antimicrobial activity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40079.  相似文献   

13.
Itaconic acid (IA) has potential as a compatibilizing agent in polymeric blends due to its unique chemical characteristics. Sodium hypophosphite (SHP) has been studied as a catalyst in esterifying reactions using multicarboxylic acids. Starch/poly(butylene adipate‐co‐terephthalate) blown films containing IA, with and without SHP, were produced. The film containing IA presented higher tensile strength (8.166 MPa) and elongation (891.473%) than the control film (5.548 MPa and 487.637%, respectively). When SHP was added (sample IA‐SHP), tensile strength increased even more (9.215 MPa); however, elongation (636.821%) was lower than in the IA film. This behavior was attributed to crosslinking between two starch itaconoate molecules intermediated by SHP. The increase in the compatibility between the polymeric phases justified the lower permeability to water vapor of the IA‐SHP films and was responsible for the production of films with a more compact and homogeneous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46629.  相似文献   

14.
The use of synthetic nonbiodegradable polymers has led to environmental damage. This has encouraged the interest to the development of new renewable and biodegradable matrices. The potential of egg white (EW) protein for the development of bioplastic materials has been published. However, the mixture of EW with Aloe‐gel (AG) for film formation has not been documented. In this study, films with different EW and AG combinations are manufactured and their properties are analyzed. In general, the AG/EW films are homogeneous, smooth, with no pores and with cumulus of protein on the surface with better extensibility, plasticity, and low tensile strength. In addition, they are yellow colored, UV‐light blocker, with high solubility (2.2 times) and high Water Vapor Permeability (4.17 times) compared with the control (EW film). The AG/EW films showed higher percentage of soluble protein and antibacterial activity than the control. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44067.  相似文献   

15.
Low‐density polyethylene (LDPE)/starch nanocomposite films were prepared by melt extrusion process. The first step includes the preparation of starch–clay nanocomposite by solution intercalation method. The resultant product was then melt mixed with the main matrix, which is LDPE. Maleic anhydride‐grafted polyethylene (MAgPE), produced by reactive extrusion, was used as a compatibilizer between starch and LDPE phases. The effects of using compatibilizer, clay, and plasticizers on physico‐mechanical properties were investigated. The results indicated that the initial intercalation reaction of clay layers with starch molecules, the conversion of starch into thermoplastic starch (TPS) by plasticizers, and using MAgPE as a compatibilizer provided uniform distribution of both starch particles and clay layers, without any need of alkyl ammonium treatment, in LDPE matrix. The nanocomposite films exhibited better tensile properties compared to clay‐free ones. In addition, the transparency of LDPE film did not significantly change in the presence of TPS and clay particles. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Electrospraying technique was used for the production of pectin films obtaining transparent and flexible products with thicknesses of 23.4 ± 3.04 µm and requiring a lower pectin solution volume (2.67 × 10?3 mL) than casting (5.97 × 10?3 mL) to produce films of the same area and thickness; the physical, structural, and thermal characteristics of these films were evaluated. Electrosprayed films were slightly more transparent, and with smoother surface than those obtained by casting, but with more and smaller internal pores, resulting in different film densities (0.7 g/cm3 electrospraying, 1.7 g/cm3 casting), that could be linked to the larger water vapor permeability value obtained. These changes could be related to a physical phenomenon, seeing as the percentage of crystallinity and melting temperature remained invariable for both films. These results show that the electrospraying technique has potential in areas such as wound dressings, tissue engineering, and the release of drugs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43779.  相似文献   

18.
The goal of this project is to obtain poly(vinyl alcohol) (PVA)/TiO2‐bovine serum albumin (BSA) nanocomposite (NC) films in different weight percentages of modified TiO2. For this purpose, to prevent the accumulation of nanoparticles (NPs) in the PVA matrix, the surface of the TiO2 NPs was treated with the BSA molecules. To achieve this aim, ultrasonic waves were used as an environmentally friendly and green process that decrease the time of reactions, help better spreading of TiO2 NPs and maintain dimensions of TiO2 NPs in the nanoscale range. In the end, the features of the PVA/TiO2‐BSA NC films were considered with a variety of techniques. The Fourier transform infrared spectroscopy, energy dispersive X‐ray, and X‐ray diffraction showed that the BSA was well placed on the surface of TiO2 NPs. The thermal gravimetric analysis and UV‐visible results demonstrated that all the PVA/TiO2‐BSA NC films have better thermal and optical properties than the pure PVA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46558.  相似文献   

19.
In this study, we developed a new approach for the fabrication of a green poly(l ‐lactic acid)‐grafted starch (St‐g‐PLA) copolymer and nanocomposite (St‐g‐PLA/organoclay)‐based films via shear‐mixing and reactive‐extrusion systems. The chemical and physical structures, thermal behavior, and morphology of the synthesized blends and some other parameters were examined by Fourier transform infrared spectroscopy and 13C cross‐polarization/magic angle spinning NMR spectroscopy, X‐ray diffraction, thermogravimetric analysis–derivative thermogravimetry, and scanning electron microscopy, respectively. Significant increases in the mechanical and permeability properties were evident in the high value of grafted poly(lactic acid) molar percentages and high exfoliation of organoclay. The biodegradability of films were investigated under aerobic composting conditions through the measurement of the temperature, moisture, pH, consumed O2 value, and carbon dioxide produced. This new strategy mainly improved the good adhesion between both phases, and it was an interesting method for the production of environmentally friendly biocomposites that could easily be scaled up for commercial production with the potential for replacing petroleum‐based plastics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44490.  相似文献   

20.
The starch/polyvinyl alcohol (PVA) bioblend sheets containing urea and formamide as plasticizers were prepared through melt processing in presence of water. The experiments indicated that urea and formamide plasticizers could form strong hydrogen bonds with starch/PVA molecules. Urea exhibited better plasticizing effect than formamide. Urea also could greatly destroy the crystal structures of PVA component in the blends, leading to the decreased crystallinity of the blends. Formamide was a good solvent for urea and could prevent urea separating from the blends, resulting in the improved stability of plasticizing systems. The blends exhibited good flexibility. Therefore, the incorporation of both urea and formamide into starch/PVA blends could exhibit synergistic effects to ensure the blends with both good plasticizing effect and the stability of the plasticizing systems. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42311.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号