首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modification of low‐density polyethylene (LDPE) hyperbranched grafting with a maleic anhydride (MAH) was carried out using corotating twin screw extruder in the presence of benzoyl peroxide. The LDPE/polyamide 6 (PA6) and LDPE‐g‐MAH/PA6 blends were obtained with a corotating twin screw extruder. The melt viscosity of the grafted LDPE was measured by a capillary rheometer. The grafted copolymer was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy The effects of variations in temperature, PA6 loading, and benzoyl peroxide and MAH concentration were investigated. The results show that most MAH monomers were grafted onto the LDPE at a lower MAH concentration. With the proper selection of the reaction parameters, we obtained a grafting degree higher than 4.9%. Mechanical test results indicate that the blends had good interfacial adhesion and good stability of the phase structure during heating, which was reflected in the mechanical properties. Furthermore, the results reveal that the tensile strength of the blends increased continuously with increasing PA6 content. Moreover, the home‐synthesized maleated LDPE could be used for the compatibilization of LDPE/PA 6 blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
This article presents the study of the modification of the particle/matrix interface region and its effects on the structure and dynamic mechanical behavior of polypropylene (PP)/hydrotalcite nanocomposites prepared by melt extrusion. The interface modification was promoted by combinying the organophillization of the hydrotalcite particles with blending the PP with a maleic anhydride‐grafted‐PP (PP‐g‐MAH) or a maleic anhydride‐grafted‐poly(styrene‐co‐ethylenebutylene‐co‐styrene) (SEBS‐g‐MAH). Sodium dodecyl sulphate was used to promote the organophillization of the hydrotalcite particles. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) showed a partially exfoliated hydrotalcite structure, with an increasing exfoliation being achieved by adding a compatibilizer and organo‐modifying the particles. Values of the Young's modulus (E), storage modulus (E′), maximum tensile strength (σmax), neck propagation strength (σneck), and elongation at break (εb) were found to depend both on the nature of the particle matrix interface as well as on the type of compatibilizer. Also, nanocomposites prepared with the organophillized particles showed lower Tg and loss factor values. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

3.
Ethylene–vinyl alcohol copolymer (EVOH) and linear low‐density polyethylene (LLDPE) blends with 5% LLDPE grafted with 1% maleic anhydride (MAH; EVOH/LLDPE/LLDPE‐g‐MAH), created to increase the interfacial compatibility, were coextruded with pure LLDPE through the microlayer coextrusion technology. The phase morphology and gas‐barrier properties of the alternating‐layered (EVOH/LLDPE/LLDPE‐g‐MAH)/LLDPE composites were studied by scanning electron microscopy observation and oxygen permeation coefficient measurement. The experimental results show that the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers were parallel to each other, and the continuity of each layer was clearly evident. This structure greatly decreased the oxygen permeability coefficient compared to the pure LLDPE and the barrier percolation threshold because of the existence of the LLDPE/EVOH/LLDPE‐g‐MAH blend layers, and the LLDPE layers diluted the concentration of EVOH in the whole composites. In addition, the effects of the layer thickness ratio of the EVOH/LLDPE/LLDPE‐g‐MAH and LLDPE layers and the layer number on the barrier properties of the layered composites were investigated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42211.  相似文献   

4.
In this study, polyamide‐12 (PA12)/brominated isobutylene‐isoprene (BIIR) TPVs with good mechanical properties and low gas permeability were prepared by dynamic vulcanization in a twin‐screw extruder. The effects of three kinds of compatibilizers on the microstructure and properties of BIIR/PA12 TPV were studied. The compatibility between BIIR and PA12 was improved when maleated hydrocarbon polymeric compatibilizer is added. The reaction between maleic anhydride and amine in polyamide leads to the in situ formation of hydrocarbon polymer grafted polyamide which subsequently can be used to lower the interfacial tension between BIIR and polyamide. The compatibilizing effect of maleic anhydride modified polypropylene (PP‐g‐MAH) on BIIR/PA12 blends is the best among these compatibilizers because the surface energy of PP‐g‐MAH is very close to that of BIIR. The dispersed rubber phase of the blend compatibilized by PP‐g‐MAH shows the smallest size and more uniform size distribution, and the resulting TPVs show the best mechanical properties. The effects of fillers on the properties of BIIR/PA12 TPV were also investigated. The size of the BIIR phase increases with the increase in the content of CaCO3. The modulus and tensile strength of TPVs increased with the increase in the content of CaCO3 because of the reinforcing effect of CaCO3 on TPVs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43043.  相似文献   

5.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A novel method of enhancing compatibility in PVC/ABS blends is the use of ABS‐grafted‐(maleic anhydride) (ABS‐g‐MAH) as a compatibilizer. In this study, maleic anhydride was grafted onto ABS (initiated by peroxide) in an internal mixer. Grafting degree was determined by a back‐titration method, and certain amounts of the resultant ABS‐g‐MAH were added to PVC/ABS blends during their melt blending in the mixer. The weight ratio of PVC to ABS was kept at 70:30. Evaluation of compatibilization was accomplished via tensile and notched Izod impact tests, scanning electron microscopy (SEM), and rheological studies. According to the SEM micrographs, better dispersion of the rubber phase and its finer size in properly compatibilized blends were indications of better compatibility. Besides, in the presence of a proper amount [5 parts per hundred parts of PVC (php)] of ABS‐g‐MAH, PVC/ABS blends showed significantly higher impact strengths than uncompatibilized blends. This result, in turn, would be an indication of better compatibility. In the presence of 5 php of compatibilizer, the higher complex viscosity and storage modulus, as well as a lower loss modulus and loss factor in the range of frequency studied, indicated stronger interfacial adhesion as a result of interaction between maleic anhydride and the PVC‐SAN matrix. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

7.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

8.
In attempt to enhance the compatibility of PET/LDPE blends by using a proper functionalized polymer as third component, diethyl maleate (DEM)‐functionalized ultralow density poly(ethylene) (ULDPE‐g‐DEM) and styrene‐b‐(ethylene‐co‐1‐butene)‐b‐styrene triblock copolymer (SEBS‐g‐DEM) were prepared by radical functionalization in the melt. Immiscible PET/LDPE blends having compositions of 70/30 and 80/20 by weight were then extruded in the presence of 1–10% by weight of ULDPE‐g‐DEM and SEBS‐g‐DEM as compatibilizer precursors and ZnO (0.3% by weight) as transesterification catalyst. In both cases, evidences about the occurring of compatibilization between the two immiscible phases, thanks to the studied reactive processes, were obtained. Moreover, the phase distribution and particle size of blends were deeply investigated. Completely different kinds of phase morphology were achieved, as ULDPE‐g‐DEM stabilized a dispersed phase morphology, whereas SEBS‐g‐DEM favored the development of a cocontinuous phase morphology. The observed differences are tentatively explained onthe basis of reactivity and physical features of polymers. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

9.
The addition of maleic anhydride grafted polybutadiene (PB‐g‐MAH) can greatly improve the compatibility of polyamide 66 (PA66)/acrylonitrile‐butadiene‐styrene copolymer (ABS) blends. Unlike the commonly used compatibilizers in polyamide/ABS blends, PB‐g‐MAH is compatible with the ABS particles' core phase polybutadiene (PB), rather than the shell styrene‐acrylonitrile (SAN). The compatibility and interaction of the components in the blends were characterized by Fourier transform‐infrared spectra (FTIR), Molau tests, melt flow index (MFI), dynamic mechanical analyses (DMA), and scanning electron microscopic (SEM) observations. The results show that PB‐g‐MAH can react with the amino end groups in PA66 while entangle with the PB phase in ABS. In this way, the compatibilizer anchors at the interface of PA66/ABS blend. The morphology study of the fracture sections before and after tensile test reveals that the ABS particles were dispersed uniformly in the PA66 matrix and the interfacial adhesion between PA66 and ABS was increased significantly. The mechanical properties of the blends thus were enhanced with the improving of the compatibility. POLYM. ENG. SCI., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Poly(butylene terephthalate)/high density polyethylene (PBT/HDPE) blends and PBT/HDPE‐grafted maleic anhydride (PBT/HDPE‐g‐MAH) blends were prepared by the reactive extrusion approach, and the effect of blend compositions on the morphologies and properties of PBT/HDPE blends and PBT/HDPE‐g‐MAH blends was studied in detail. The results showed that flexural strength, tensile strength, and notched impact strength of PBT/HDPE blends decreased with the addition of HDPE, and flexural strength and tensile strength of PBT/HDPE‐g‐MAH blends decreased, while the notched impact strength of PBT/HDPE‐g‐MAH increased with the addition of HDPE‐g‐MAH. Compared with PBT/HDPE blends, the dimension of the dispersed phase particles in PBT/HDPE‐g‐MAH blends was decreased and the interfacial adhesion was increased. On the other hand, the effects of HDPE and HDPE‐g‐MAH contents on the crystalline and the rheological properties of the blends were also investigated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 6081–6087, 2006  相似文献   

11.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Styrene butadiene rubber (SBR) was modified by the grafting reaction of maleic anhydride (MAH) in the presence of the initiator benzoyl peroxide (BPO). This modified elastomer was then blended with poly(ethylene terephthalate) (PET) bottle waste, and the mechanical and morphological properties of the resulting blends were studied. The amount of grafted MAH was determined by chemical titration. The results revealed that the concentrations of MAH and BPO strongly affected the grafting process. The morphology of the dispersed phase for blends of PET waste and SBR‐g‐MAH was quite different from that of a simple blend of PET waste and SBR. Dynamic mechanical thermal analysis revealed suitable compatibility between PET waste and styrene butadiene rubber‐graft‐maleic anhydride (SBR‐g‐MAH). The enhanced compatibility resulted in better impact properties. The better compatibility was concluded to result from bond formation between the carbonyl group of SBR‐g‐MAH and the hydroxyl or carboxyl end groups of PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1615–1623, 2006  相似文献   

13.
A new grafting method was developed to incorporate maleic anhydride directly onto solid‐state polypropylene powders. Maleic anhydride grafts altered the nonpolar characteristics of polypropylene so that much better mixing was achieved in blends and composites of polypropylene with many other polymers and fillers. Maleic anhydride was grafted onto polypropylene by the peroxide‐catalyzed swell grafting method, with a maximum extent of grafting of 4.60%. Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, tensile testing, and impact testing were used to characterize the isotactic polypropylene (iPP), maleic anhydride grafted polypropylene (MAH‐giPP), and (isotactic polypropylene)/(calcium carbonate) composites (iPP/CaCO3). The crystallinity and heat of fusion of the MAH‐giPP decreased as the extent of grafting increased. The mechanical properties of the CaCO3 filled polypropylene were improved by adding MAH‐giPP as a compatibilizing agent. The dispersion of the fillers in the polymer matrix and the adhesion between the CaCO3 particles and the polymer matrix were improved by adding the compatibilizer.  相似文献   

14.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Polyamide 66–thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene–propylene–diene‐grafted maleic anhydride terpolymer (MAH‐g‐EPDM). The blending was performed on a twin‐screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH‐g‐EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH‐g‐EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH‐g‐EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH‐g‐EPDM. POLYM. COMPOS., 27:608–613, 2006. © 2006 Society of Plastics Engineers  相似文献   

16.
The solution/precipitation method was used for the preparation of polyethylene (PE)/cellulosic fibers composites. Blends of modified linear low density PE [linear low density PE‐grafted maleic anhydride (LLDPE‐g‐MAH)] with low density PE (LDPE) were used as matrices for the aforementioned composites. Blends of LDPE with a copolymer of LDPE and acrylic acid (AA)/n‐butyl acrylate (n‐BA) [(AA/n‐BA)–LDPE] were also studied for the same purpose. The reinforcing effect of cellulosic fibers in terms of tensile strength is more enhanced when mixtures of the modified polar polymer with pure PE were used as matrices, as compared with that corresponding to matrices consisting of modified PE alone. Regarding the Izod impact strength, composites of LLDPE‐g‐MAH presented the best performance with an improvement of 135% in comparison with specimens consisting of LDPE matrix, whereas composites of (AA/n‐BA)‐LDPE matrix showed a modest improvement of their impact resistance. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
The formation of core‐shell morphology within the dispersed phase was studied for composite droplet polymer‐blend systems comprising a polyamide‐6 matrix, ethylene‐propylene‐diene terpolymer (EPDM) shell and high density polyethylene (HDPE) core. In this article, the effect of EPDM with different molecular weights on the morphology and properties of the blends were studied. To improve the compatibility of the ternary blends, EPDM was modified by grafting with maleic anhydride (EPDM‐g‐MAH). It was found that core‐shell morphology with EPDM‐g‐MAH as shell and HDPE as core and separated dispersion morphology of EPDM‐g‐MAH and HDPE phase were obtained separately in PA6 matrix with different molecular weights of EPDM‐g‐MAH in the blends. DSC measurement indicated that there may be some co‐crystals in the blends due to the formation of core‐shell structure. Mechanical tests showed that PA6/EPDM‐g‐MAH/HDPE ternary blends with the core‐shell morphology exhibited a remarkable rise in the elongation at break. With more perfect core‐shell composite droplets and co‐crystals, the impact strength of the ternary blends could be greatly increased to 51.38 kJ m?2, almost 10 times higher than that of pure PA6 (5.50 kJ m?2). POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

18.
Five fungi including Aspergillus niger, Penicilium pinophilum, Chaetoomium globsum, Gliocladium virens and Aureobasium pullulans were used to investigate the biodegradation of starch‐based elastomers: polyethylene‐octene elastomer (POE)/starch and grafted POE‐g‐MAH/starch copolymer blends. The viability of the composite spore suspensions were measured before estimating the fungal growth on the surface of specimens. The weight loss, morphology and mechanical properties of the blended specimens were measured using scanning electron microscopy and a mechanical properties tester after 28 days of culturing. The spore suspension in the experiment showed good viability. Pure POE and POE‐g‐MAH did not allow significant fungal growth. Pure POE did not lose weight or have a change in tensile strength, but pure POE‐g‐MAH lost about 0.07% of its weight with a slight reduction in tensile strength during culture period. There was heavy growth on the surface of POE/starch and POE‐g‐MAH/starch blends after 28 days of culturing. The weight loss of POE/starch and POE‐g‐MAH/starch blends increased with increasing starch content. POE‐g‐MAH/starch blends tended to lose more weight than POE/starch blends. After biodegradation, the surface of POE/starch and POE‐g‐MAH/starch blends became rough with many holes and cracks, indicating that the films were eroded by the fungi. Tensile strength of POE/starch and POE‐g‐MAH/starch blends decreased after culturing because of microbial attack. On the contrary, elongation at break of POE‐g‐MAH/starch blends increased after biodegradation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114:3574–3584, 2009  相似文献   

19.
A method concerning with the simultaneous reinforcing and toughening of polypropylene (PP) was reported. Dynamical cure of the epoxy resin with 2‐ethylene‐4‐methane‐imidazole (EMI‐2,4) was successfully applied in the PP/maleic anhydride‐grafted ethylene‐vinyl acetate copolymer (MAH‐g‐EVA), and the obtained blends named as dynamically cured PP/MAH‐g‐EVA/epoxy blends. The stiffness and toughness of the blends are in a good balance, and the smaller size of epoxy particle in the PP/MAH‐g‐EVA/epoxy blends shows that MAH‐g‐EVA was also used as a compatibilizer. The structure of the dynamically cured PP/MAH‐g‐EVA/epoxy blends is the embedding of the epoxy particles by the MAH‐g‐EVA. The cured epoxy particles as organic filler increases the stiffness of the PP/MAH‐g‐EVA blends, and the improvement in the toughness is attributed to the embedded structure. The tensile strength and flexural modulus of the blends increase with increasing the epoxy resin content, and the impact strength reaches a maximum of 258 J/m at the epoxy resin content of 10 wt %. DSC analysis shows that the epoxy particles in the dynamically cured PP/MAH‐g‐EVA/epoxy blends could have contained embedded MAH‐g‐EVA, decreasing the nucleating effect of the epoxy resin. Thermogravimetric results show the addition of epoxy resin could improve the thermal stability of PP, the dynamically cured PP/MAH‐g‐EVA/epoxy stability compared with the pure PP. Wide‐angle x‐ray diffraction analysis shows that the dynamical cure and compatibilization do not disturb the crystalline structure of PP in the blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
A novel processing method of combining dynamic vulcanization with the silane‐grafted water‐crosslinking technique to improve the comprehensive properties of polyethylene (PE) is reported. PE was grafted with vinyl triethoxysilane (VTEO) first, and then, N,N,N,N′‐ tetragylcidyl‐4,4′‐diaminodiphenylmethane epoxy resin was dynamically cured in a PE‐g‐VTEO matrix through a twin‐screw extruder to prepare PE‐g‐VTEO/epoxy blends. Polyethylene‐graft‐maleic anhydride (PE‐g‐MAH) was used as a compatibilizer to improve the interaction between PE‐g‐VTEO and the epoxy resin. The results show that the novel processing method improved the strength, stiffness, and toughness of the blends, especially the heat resistance of the blends, by the addition of the dynamically cured epoxy resin as the reinforcement. PE‐g‐MAH increased the compatibility between PE‐g‐VTEO and the epoxy resin, which played an important role in the improvement of the comprehensive properties of the blends. In addition, after treatments in both hot air and hot water, the comprehensive properties of blends were further improved, thanks to the further curing reaction of epoxy with PE‐g‐VTEO. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号