首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, poly(1,8-diaminonaphthalene) (poly(1,8-DAN)) was synthesized by the reaction of 1,8-diaminonaphthalene (1,8-DAN) with ammonium persulfate (APS) and then the equilibrium, kinetics and thermodynamics of rhodium(III) adsorption onto poly(1,8-DAN) were studied. Poly(1,8-DAN), Rh(III)-poly(1,8-DAN) and Rh(III)-1,8-DAN complex were characterized by UV–vis. and FTIR spectroscopy, thermal analysis, potentiometric titration and electrical conductivity. In the adsorption studies, the effects of acidity, the temperature and the concentration of rhodium(III) were examined. It was found that poly(1,8-DAN) has Rh(III) adsorption capacity (qm) of 11.11 mg/g polymer. The adsorption data fitted better to the Freundlich isotherm then the Langmuir isotherm, and the kinetics of the adsorption fitted to pseudo second order kinetic model. The Δ values were calculated as ?7.33 at 20 and ?11.31 kJ/mol at 60 °C. The enthalpy (Δ), entropy (Δ) and the activation energy (Ea) of the adsorption were found as 21.335 kJ/mol, 97.057 J/mol K and 70.210 kJ/mol, respectively. It was predicted that the adsorption of Rh(III) onto poly(1,8-DAN) was an endothermic chemical adsorption process governed by both ionic interaction and chelating mechanisms. It was also observed that the adsorption of Rh(III) lowered the electrical conductivity of the pol(1,8-DAN).  相似文献   

2.
A type of chelating resin crosslinking polystyrene‐supported 2,5‐dimercapto‐1,3,4‐thiodiazole (also called bismuththiol I, BMT), containing sulfur and nitrogen atoms, was prepared. The structure of PS‐BMT was confirmed by FTIR, elemental analysis, and X‐ray photoelectron spectroscopy (XPS). Adsorption of Pd(II), Pt(IV), and Au(III) was investigated. The capacity of PS‐BMT to adsorb Pd(II) and Pt(IV) was 0.190 and 0.033 mmol/g, respectively. The adsorption dynamics of Pd(II) showed that adsorption was controlled by liquid film diffusion and that the apparent activation energy, Ea, was 32.67 kJ/mol. The Langmuir model was better than the Freundlich model in describing the isothermal process of Pd(II), and the ΔG, ΔH, and ΔS values calculated were ?0.33 kJ/mol, 26.29 kJ/mol, and 87.95 J mol?1 K?1, respectively. The mechanisms of adsorption of Pd(II), Pt(IV), and Au(III) were confirmed by XPS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 631–637, 2006  相似文献   

3.
A sequence of semi‐interpenetrating polymer network (semi‐IPN) were synthesized by free radical photo copolymerizing acrylic acid and isopropyl acrylamide (NIPAAm) in aqueous sodium alginate (NaAlg). Their structures (FT‐IR), thermal stability (TG/DTG), morphology (SEM), mechanical properties, reactive blue 4 (RB 4) dye adsorption (624 mg/g) and its dying characteristics, reusability of dye and adsorbent were evaluated. TG thermograms of semi‐IPN in air revealed zero order kinetics for initial step thermal degradation with an activation energy of 68.68 kJ/mol. Dye adsorption showed best fit for Langmuir adsorption isotherm and the kinetics followed pseudo‐second‐order model. The water and dye diffusion kinetics followed non‐Fickian mechanism. The changes in thermodynamic parameters namely Gibbs free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated that the adsorption was spontaneous and exothermic process for RB 4/semi‐IPN system. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40968.  相似文献   

4.
A copolymer flocculant (CATCS) derived from starch and chitosan was fabricated and used as eco‐friendly adsorbent for removal of Cr(VI) from aqueous solution. The CATCS flocculant was characterized by scanning electron microscope, thermogravimetic analysis, and Fourier transform infrared spectroscopy. The effects of CATCS dosage, initial Cr(VI) concentration, pH, and reaction time on removal of Cr(VI) were discussed. The results showed CATCS removed Cr(VI) effectively and the adsorption isotherm agreed well with the Freundlich isotherm and R–P isotherm models. The enthalpy change (ΔH) of the process was 16.75 kJ/mol suggesting the existence of chemisorption and the reaction was endothermic. Moreover, the negative free energy change (ΔG) indicated the adsorption process was feasible and spontaneous. The positive entropy change (ΔS) showed there was an increase of disorder in the system during the adsorption process. The adsorption kinetics results showed that the adsorption could be described by the pseudo‐second‐order kinetics mechanism. The activation energy (Ea) of the adsorption reaction was 29.16 kJ/mol. POLYM. ENG. SCI., 56:1213–1220, 2016. © 2016 Society of Plastics Engineers  相似文献   

5.
The adsorption of Pb(II) and Cd(II) ions with crosslinked carboxymethyl starch (CCS) was investigated as function of the solution pH, contact time, initial metal‐ion concentration, and temperature. Isotherm studies revealed that the adsorption of metal ions onto CCS better followed the Langmuir isotherm and the Dubinin–Radushkevich isotherm with adsorption maximum capacities of about 80.0 and 47.0 mg/g for Pb(II) and Cd(II) ions, respectively. The mean free energies of adsorption were found to be between 8 and 16 kJ/mol for Pb(II) and Cd(II) ions; this suggested that the adsorption of Pb(II) and Cd(II) ions onto CCS occurred with an ion‐exchange process. For two‐target heavy‐metal ion adsorption, a pseudo‐second‐order model and intraparticle diffusion seem significant in the rate‐controlling step, but the pseudo‐second‐order chemical reaction kinetics provide the best correlation for the experimental data. The enthalpy change for the process was found to be exothermic, and the ΔSθ values were calculated to be negative for the adsorption of Pb(II) and Cd(II) ions onto CCS. Negative free enthalpy change values indicated that the adsorption process was feasible. The studies of the kinetics, isotherm, and thermodynamics indicated that the adsorption of CCS was more effective for Pb(II) ions than for Cd(II) ions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
A comprehensive feasibility study on adsorption of Cu(II) and a water‐soluble nitrazine yellow (NY) dye by chitosan‐montmorillonite (CS‐MMT) hydrogel as the biosorbent was investigated as a function of biosorbent dosage, initial concentration, pH, temperature, and the presence of salts. Box–Behnken methodology was applied to optimize the adsorption experiments. Maximum adsorption values were determined as 132.74 mg/g and 144.41 mg/g at pH = 5.0, for Cu(II) and NY dye, respectively. Equilibrium isotherms of Langmuir and Freundlich were analyzed by the non‐linear regression model. The equilibrium data were well described by Freundlich model and the adsorption process well fitted pseudo‐second order kinetics. The enthalpy change of adsorption (ΔH°) were calculated as ?3.78 kJ/mol and ?5.75 kJ/mol for Cu(II) and NY dye, respectively, indicating that the adsorption processes were exothermic. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43664.  相似文献   

7.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

8.
《分离科学与技术》2012,47(12):1820-1829
Cellulose fiber was separated from date palm leaflets and was carbonized by dehydration using dilute sulfuric acid at 150°C. Produced dehydrated carbon fiber (DCF) was tested for the sorption of Pd(II) and Pt(II) at different pH, contact time, metal concentration, and temperature. With the rise in pH, sorption was found to increase for Pd(II) but decreases for Pt(II). The optimum pH ranges of 1-3 for Pt(II) and 3-3.5 for Pd(II). Approximate equilibrium was obtained within 50 hr for both metals with sorption data fitting the pseudo second order model well. Activation energy, Ea, was found to be higher than 40 kJ/mol for the sorption of both metals, indicating the involvement of chemical processes in metal sorption. The Langmuir isotherm was found to fit the sorption data more than other isotherms. Thermodynamic parameters were calculated and showed an involvement of chemical processes in metal sorption with stronger interaction for the carbon with Pb(II) than with Pt(II). Both of Pd(II) and Pt(II) were reduced to their respective elemental forms on the surface of the fiber as confirmed by scanning electron microscopy and x-ray diffraction.  相似文献   

9.
In this study, a novel selective Au(III) chelating surface ion imprinted fibers based on phenyl thiosemicarbazide modified natural cotton (Au‐C‐PTS) has been synthesized, and applied for selective removal of Au(III) from aqueous solutions. Batch adsorption experiments were performed with various parameters, such as contact time, pH, initial Au(III) concentration, and temperature. The kinetic studies revealed that the adsorption process could be described by pseudo‐second‐order kinetic model, while the adsorption data correlated well with the Langmuir and Freundlich models. The maximum adsorption capacities calculated from the Langmuir equation are 140 ± 1 mg g?1 and 72 ± 1 mg g?1 at pH 5 for both Au‐C‐PTS and NI‐C‐PTS, respectively. The estimated thermodynamic parameters (Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy change (ΔS°)) indicated the spontaneity and exothermic nature of the adsorption process. Furthermore, the selectivity study revealed that the ion imprinted fibers was highly selective to Au(III) compared with Cu(II), Cd(II), Hg(II), and Fe(III). The adsorbent was successfully regenerated with a 0.1M HNO3 solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40769.  相似文献   

10.
Thiourea‐formaldehyde (TUF), a well‐known chelating resin, has been synthesized and it was used in the adsorption, selective separation, and concentration of Pd(II) ions from Fe(III), Co(II) Ni(II), and Cu(II) base metal ions. The composition of the synthesized resin was determined by elemental analysis. The effect of initial acidity/pH and the adsorption capacity for Pd(II) ions were studied by batch technique. The adsorption and separation of Pd(II) were then examined by column technique. FTIR spectra and SEM/EDS analysis were also recorded before and after the adsorption of Pd(II). The optimum pH was found to be 4 for the adsorption. The adsorption data fitted well to the Langmuir isotherm. The maximum adsorption capacity of the TUF resin for Pd(II) ions was found to be 31.85 mg g−1 (0.300 mmol g−1). Chelating mechanism was effective in the adsorption. Pd(II) ions could be separated efficiently from Fe(III), Cu(II), Ni(II), and Co(II) ions using TUF resin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
BACKGROUND: This research describes the adsorption of copper ions from aqueous solutions following the modification of rubber (Hevea brasiliensis) leaves with formaldehyde solution. The main objectives of this research were to identify the binding mechanisms of copper ions on the chemically modified rubber leaves by spectroscopic techniques and to investigate the effects of several important physicochemical parameters such as pH, copper concentration, contact time, adsorbent dose and temperature on copper removal. RESULTS: Based on a kinetic study, the pseudo‐second‐order model was found to fit the experimental results well, while the Boyd kinetic model indicated that the rate‐determining step was due to film diffusion. Adsorption isotherms were modelled by the Langmuir and Freundlich isotherm equations, with the former providing a better fit for the data. Based on the Langmuir model, the maximum adsorption capacities of Cu(II) ions at 300, 310 and 320 K were 8.36, 8.61 and 8.71 mg g?1, respectively. Thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy changes (ΔS°) were calculated. The adsorption process was spontaneous as the values of ΔG° were negative, and endothermic as higher adsorption capacities were recorded at higher temperatures. More than 80% of copper ions bound on the adsorbent were able to be desorbed using 0.02 mol L?1 HCl, HNO3 and EDTA solutions. Besides ion exchange, surface complexation could also play a major role in copper binding. CONCLUSION: Due to its relative abundance and satisfactory adsorption capacity, the modified rubber leaves can be considered as a good low‐cost adsorbent for removing copper ions from dilute aqueous solutions. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
This study examined the effectiveness of a new adsorbent prepared from banana (Musa paradisiaca) stalk, one of the abundantly available lignocellulosic agrowastes, in removing Pb(II) and Cd(II) ions from aqueous solutions. The adsorbent (PGBS‐COOH) having a carboxylate functional group at its chain end was synthesized by graft copolymerization of acrylamide on to banana stalk, followed by functionalization. Batch adsorption experiments were carried out as a function of solution pH, ionic strength, contact time, metal concentration, adsorbent dose and temperature. A pH range of 5.5–8.0 was found to be effective for the maximum removal for both Pb(II) and Cd(II). Metal uptake was found to decrease with increase in ionic strength due to the expansion of the diffuse double layer and, more importantly, the formation of some chloro complexes (since NaCl was used in the adjustment of ionic strength), which do not appear to be adsorbed to the same extent as cations [M2+ and M(OH)+]. The kinetic studies showed that an equilibrium time of 3 h was needed for the adsorption of Pb(II) and Cd(II) on PGBS‐COOH and adsorption processes followed a pseudo‐second‐order equation. The Langmuir isotherm model fitted the experimental equilibrium data well. The maximum sorption capacity for Pb(II) and Cd(II) ions was 185.34 and 65.88 mg g?1, respectively, at 30 °C. The thermodynamic parameters such as changes in free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were derived to predict the nature of adsorption. The isosteric heat of adsorption was found to be independent of surface coverage. Adsorption experiments were also conducted using a commercial cation exchanger, Ceralite IRC‐50, for comparison. Synthetic wastewater samples were treated with the adsorbent to demonstrate its efficiency in removing Pb(II) and Cd(II) ions from industrial wastewaters. Acid regeneration was tried for several cycles with a view to recovering the sorbed metal ions and also restoring the sorbent to its original state. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
《分离科学与技术》2012,47(16):2399-2407
A new phenol–formaldehyde based chelating resin containing 4-(2-thiazolylazo) resorcinol (TAR) functional groups has been synthesized and characterized by Fourier transform infrared spectroscopy and elemental analysis. Its adsorption behavior for Cu(II), Pb(II), Ni(II), Co(II), Cd(II), and Mn(II) has been investigated by batch and column experiments. The chelating resin is highly selective for Cu(II) in the pH range 2 ~ 3, whereas alkali metal and alkaline earth metal ions such as Na(I), Mg(II), and Ca(II) are not adsorbed even at pH 6. Quantitative recovery of most metal ions studied in this work except Co(II) is achieved by elution with 2M HNO3 at a flow rate of 0.2 mL min?1. A similar trend is observed for distribution coefficient values. The quantitative separations achieved on a mini-column of chelating resin include Cd(II) – Cu(II), Mn(II) – Pb(II), Co(II) – Cu(II), Mn(II) – Ni(II), and Mn(II) – Co(II) – Cu(II). The recovery of copper(II) is quantitative (98.0–99.0%) from test solutions (10–50 mg/L) by 1 mol/L HNO3-0.01 mol/L EDTA. The chelating resin is stable in acidic solutions below 2.5 M HNO3 or HCl as well as in alkaline solution below pH 11. The adsorption behavior of the resin towards Cu(II) was found to follow Langmuir isotherm and second order rate.  相似文献   

14.
The free‐radical polymerization of bis‐(N‐ethylacrylamido)‐ethylenglycol ( I ), N,N′‐dimethyl‐1,6‐bis (acrylamido)‐hexan ( II ), and N,N′‐diethyl‐1,3‐bis(acrylamido)‐propan ( III ) were investigated. The cross‐linking polymerization was followed in bulk by using the ampoules technique and gravimetry. Polymerizations exhibited an abnormal kinetic behavior. For the monomer II , for example, the reaction order to 2,2′‐ azobisisobutyronitril (AIBN) initiator of 1.28, and the polymerization overall activation energy of 151 kJ/mol between 50 and 75°C were determined. The increasing temperature and decreasing initiator concentration resulted in an increase of double bonds consumption in the formed polymer network. At 75°C the residual unsaturation was under 2%, compared with 9.9% at 50°C. The monomer conversion‐time dependences were complemented also with differential scanning calorimetry (DSC) recording the heat released during polymerization. The extension of peak time with decreasing the instant heat flow rate at this point sort the studied bis(acrylamide)s according the reactivity in the following sequence: monomer III > I > II . The polymer samples sol–gel analyses in ethanol allowed the determination of the molecular weight Mc between the network crosslinks. The presence of microgel particles at the very beginning of polymerization and the changes in chain conformation with temperature we consider as the way in which was affected the polymerization kinetics of these monomers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
16.
The adsorption behavior of Cu(II) ions onto poly(2‐hydroxy‐4‐acryloyloxybenzophenone), polymer I, and onto poly(2‐hydroxy‐4‐acryloyloxybenzophenone) crosslinked with different amounts of divinylbenzene (DVB), polymers II, III, and IV, in aqueous solutions was investigated using batch adsorption experiments as a function of contact time, pH, and temperature. The amount of metal ion uptake of the polymers was determined by using atomic absorption spectrometry (AAS) and the highest uptake was achieved at pH 7.0 and by using perchlorate as an ionic strength adjuster for polymers I, II, III, and IV. Results revealed that the adsorption capacity (qe and Qm) of Cu(II) ions decreases with increasing crosslinking due to the decrease of chelation sites. In addition, the rate of adsorption (k2) of Cu(II) ions decreases with the increase of crosslinking because it becomes more difficult for Cu(II) ions to diffuse into the chelation sites. The isothermal behavior and the kinetics of adsorption of Cu(II) ions on these polymers with respect to the initial mass of the polymer and temperature were also investigated. The experimental data of the adsorption process was found to correlate well with the Langmuir isotherm model. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
《分离科学与技术》2012,47(4):486-496
The efficacy of treated Shorea dasyphylla bark for Cu(II) and Cr(VI) adsorption was assessed in a batch adsorption system as a function of pH, agitation period, and initial metal concentration. The equilibrium nature of Cu(II) and Cr(VI) adsorption was described by the Freundlich, Langmuir, and Dubinin-Radushkevich isotherms. The maximum monolayer capacities of treated Shorea dasyphylla bark, estimated from the Langmuir equation were 184.66 and 42.72 mg/g for Cu(II) and Cr(VI), respectively. The experimental results were fitted using pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models; the pseudo-second order showed the best conformity to the kinetic data. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were determined by applying the Van't Hoff equation. The adsorption of Cu(II) and Cr(VI) onto treated Shorea dasyphylla bark was found to be spontaneous and exothermic. The adsorption mechanism was confirmed by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The dimensionless constant separation factor (R L), indicated that treated Shorea dasyphylla bark was favorable for Cu(II) and Cr(VI) adsorption.  相似文献   

18.
《分离科学与技术》2012,47(4):705-722
Abstract

The sorption behavior of 3.18×10?6 mol l?1 solution of Tm(III) metal ions onto 7.25 mg l?1 of 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated at different temperatures i.e. 303 K, 313 K, and 323 K. The maximum equilibration time of sorption was 30 minutes from pH 7.5 buffer solution at all temperatures. The various rate parameters of adsorption process have been investigated. The diffusional activation energy (ΔEads) and activation entropy (ΔSads) of the system were found to be 22.1±2.6 kJ mol?1 and 52.7±6.2 J mol?1 K?1, respectively. The thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) were calculated and interpreted. The positive value of ΔH and negative value of ΔG indicate that sorption is endothermic and spontaneous in nature, respectively. The adsorption isotherms such as Freundlich, Langmuir, and Dubinin–Radushkevich isotherm were tested experimentally at different temperatures. The changes in adsorption isotherm constants were discussed. The binding energy constant (b) of Langmuir isotherm increases with temperature. The differential heat of adsorption (ΔHdiff), entropy of adsorption (ΔSdiff) and adsorption free energy (ΔGads) at 313 K were determined and found to be 38±2 kJ mol?1, 249±3 J mol?1 K?1 and –40.1±1.1 kJ mol?1, respectively. The stability of sorbed complex and mechanism involved in adsorption process has been discussed using different thermodynamic parameters and sorption free energy.  相似文献   

19.
BACKGROUND: The removal of heavy metals using adsorption techniques with low cost biosorbents is being extensively investigated. The improved adsorption is essentially due to the pores present in the adsorbent. One way of improving the porosity of the material is by irradiation of the precursor using microwaves. In the present study, the adsorption characteristics of nickel onto microwave‐irradiated rice husks were studied and the process variables were optimized through response surface methodology (RSM). RESULT: The adsorption of nickel onto microwave‐irradiated rice husk (MIRH) was found to be better than that of the raw rice husk (RRH). The kinetics of the adsorption of Ni(II) from aqueous solution onto MIRH was found to follow a pseudo‐second‐order model. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were also evaluated. The thermodynamics of Ni(II) adsorption onto MIRH indicates that it is spontaneous and endothermic in nature. The response surface methodology (RSM) was employed to optimize the design parameters for the present process. CONCLUSION: Microwave‐irradiated rice husk was found to be a suitable adsorbent for the removal of nickel(II) ions from aqueous solutions. The adsorption capacity of the rice husk was found to be 1.17 mg g?1. The optimized parameters for the current process were found as follows: adsorbent loading 2.8 g (100 mL)?1; Initial adsorbate concentration 6 mg L?1; adsorption time 210 min.; and adsorption temperature 35 °C. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
《分离科学与技术》2012,47(4):923-943
Abstract

The sorption behavior of 2.7×10?5 M solution of Th(IV) ions on 1‐(2‐pyridylazo)‐2‐naphthol (PAN) loaded polyurethane foam (PUF) has been investigated. The quantitative sorption was occurred from pH 6 to 9 from acetate buffer solutions. The sorption conditions were optimized with respect to pH, shaking time, and weight of sorbent. The sorption data followed the Freundlich, Langmuir, and Dubinin‐Radushkevich (D‐R) isotherms very successfully at low metal ions concentration. The Freundlich isotherm constant (1/n) is estimated to be 0.22±0.01, and reflects the surface heterogeneity of the sorbent. The Langmuir isotherm gives the maximum monolayer coverage is to be 8.61×10?6 mol g?1. The sorption free energy of the D‐R isotherm was 17.85±0.33 kJ mol?1, suggesting chemisorption involving chemical bonding was responsible for the adsorption process. The numerical values of thermodynamic parameters such as enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) indicate that sorption is endothermic, entropy driven, and spontaneous in nature. The adsorption free energy (ΔGads) and effective free energy (ΔGeff) are also evaluated and discussed. The effect of different anions on the sorption of Th(IV) ions onto PAN loaded PUF was studied. The possible sorption mechanism on the basis of experimental finding was discussed. A new separation procedure of Th(IV) from synthetic rare earth mixture using batch, column chromatography, and squeezing techniques were reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号