首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecularly imprinted polymer (MIP) based on methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) monomer was synthesized for the purpose of selective recognition of benzylparaben (BzP). The MAA-β-CD monomer was produced by bridging a methacrylic acid (MAA) and β-cyclodextrin (β-CD) using toluene-2,4-diisocyanate (TDI) by reacting the –OH group of MAA and one of the primary –OH groups of β-CD. This monomer comprised of triple interactions that included an inclusion complex, π–π interaction, and hydrogen bonding. To demonstrate β-CD performance in MIPs, two MIPs were prepared; molecularly imprinted polymer-methacrylic acid functionalized β-cyclodextrin, MIP(MAA-β-CD), and molecularly imprinted polymer-methacrylic acid, MIP(MAA); both prepared by a reversible addition fragmentation chain transfer polymerization (RAFT) in the bulk polymerization process. Both MIPs were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Brunauer-Emmett-Teller (BET). The presence of β-CD not only influenced the morphological structure, it also affected the specific surface area, average pore diameter, and total pore volume of the MIP. The rebinding of the imprinting effect was evaluated in binding experiments, which proved that the β-CD contributed significantly to the enhancement of the recognition affinity and selective adsorption of the MIP.  相似文献   

2.
Water‐compatible molecularly imprinted polymers (MIPs) for caffeine were synthesized in aqueous medium with a new functional monomer, 1‐(α‐methyl acrylate)‐3‐methylimidazolium bromide (1‐MA‐3MI‐Br), which had π–π and hydrogen‐bonding interactions. Caffeine‐imprinted polymers were prepared in suspension polymerization with 1‐MA‐3MI‐Br and methacrylic acid (MAA), which only had hydrogen bonding, as a functional monomer. For the specific binding characteristics of the new functional monomer 1‐MA‐3MI‐Br, the adsorption capacity and relative separation factor (β) of MIPs for caffeine were significantly enhanced. The maximum adsorption capacities of 1‐MA‐3MI‐Br–MIP and MAA–MIP imprinted microspheres for caffeine were 53.80 and 28.90 μmol/g, respectively. Moreover, the relative separation factors were measured by comparison of the separation characteristics under competitive adsorption conditions. The results showed that the β of MAA–MIP for caffeine relative to theophylline was only 1.65; this showed a very poor recognition selectivity for caffeine, but β of 1‐MA‐3MI‐Br–MIP for caffeine with respect to theophylline was remarkably enhanced to 3.19; this showed an excellent recognition selectivity and binding affinity toward caffeine molecules in an aqueous environment. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
Recent years have witnessed growing applications of the molecular imprinting technique for the detection of pesticide residues in environmental and food samples. In this study, molecularly imprinted polymers (MIPs) for pyrethroids, a class of popular insecticides, were synthesized by the crosslinking of β‐cyclodextrin (β‐CD) with 1,6‐hexamethylene diisocyanate (HMDI) or toluene‐2,4‐diisocyanate (TDI) in dimethyl sulfoxide, with lambda‐cyhalothrin (LCT) as a model template. Equilibrium batch‐rebinding tests were operated in different aqueous solutions. The results indicate that MIP prepared with TDI (MIP–TDI) possessed a much greater binding activity to LCT than MIP based on HMDI (MIP–HMDI), and MIP–TDI displayed a remarkably specific binding to LCT (with an imprinting factor of around 3) in an acetonitrile/water (4:7 v/v) mixture. The adsorption of LCT by MIP–TDI reached equilibrium after 3 h; this demonstrated comparatively rapid adsorption kinetics. Also, MIP–TDI could be regenerated eight times at least; this implied that the robust β‐CD polymer has the potential for practical applications. Furthermore, a cross‐selectivity study indicated that the high adsorption of LCT and its analogues by MIP–TDI in aqueous media must have been ascribed to the cooperative effects of CD inclusion interaction and stereoshape memory. This study paved the way for the use of β‐CD as a functional monomer for preparing smart artificial receptors for the efficient recognition of pyrethroids under aqueous conditions. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
A molecularly imprinted polymer (MIP) monolith for selective recognition of 4‐aminophenol (4‐AMP) was prepared by in situ polymerization technique as high‐performance liquid chromatography (HPLC) stationary phase. For this purpose, several 4‐AMP imprinted monoliths were synthesized by using only methacrylic acid (MAA), acrylamide (AAM), or isobornyl methacrylate (IBMA) in the presence of high amount of crosslinker, ethylene glycol dimethacrylate (EDMA), and these polymeric monolith columns were connected to HPLC to evaluate their separation capabilities. By selection of appropriate functional monomer and optimization of polymerization conditions, MAA‐based monolithic MIP showed good flow through properties, high selectivity to the templated molecule, and high resolution in the separation of paracetamol and its main impurity, 4‐AMP. Besides, effective binding site density and dissociation constant of this monolith were estimated by using frontal chromatography and found as 7.95 μmol/g and 1.06 mM, respectively. Surface area of the same monolith was found as 23.48 m2/g from multipoint BET analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The objective of this study was to identify a kind of molecular imprinting polymer (MIP) which was suitable for recognizing naringin (NG) in aqueous medium. Based on two crosslinkers (hexamethylene diisocyanate and epichlorohydrin) and two polymerization methods (solution polymerization and emulsion polymerization), four non‐covalent naringin‐β‐cyclodextrine (NG‐β‐CD) imprinted polymers were prepared by using β‐CD as a functional monomer and NG as a template molecule. The binding property and selectivity were evaluated by equilibrium binding experiments. These demonstrated that all the sites in the MIPs show good selective binding ability for NG from naringin dihydrochalcone, a structurally similar molecule. Of the four MIPs, rod‐like 3# MIP which was prepared by emulsion polymerization using hexamethylene diisocyanate as crosslinker exhibited the highest selectivity, its imprinting factor α being 1.53. Scatchard analysis of 3# MIP suggests that there are two classes of binding sites during the MIP's recognition of NG. Additionally, the 3# MIP could be used at least five times without any loss in sorption capacity. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
马红玲  苏立强 《化工时刊》2010,24(12):18-20
以烟酰胺为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,偶氮二异丁腈为引发剂,乙腈为溶剂,采用沉淀聚合法制备了烟酰胺分子印迹聚合物,通过静态平衡吸附和色谱分析对印迹聚合物进行表征,结果表明,印迹聚合物对烟酰胺分子具有很好的吸附能力和特异识别性。  相似文献   

7.
以舒必利(SUL)为模板分子,甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯为交联剂,采用本体聚合法合成了舒必利的分子印迹聚合物(MIP),采用静态平衡和等温吸附实验研究了影响MIP性能的各种因素及吸附机理. 结果表明,当SUL为0.3 mmol时,制备其MIP的优化条件为:乙腈溶剂用量6 mL, SUL与MAA的摩尔比为1:4,以甲醇-乙酸(9:1, j)溶液为洗脱剂洗脱;该聚合物结构均匀、疏松,对SUL具有较好吸附性能,最大吸附容量为79.12 mmol/g,印迹因子为3.76;初步认为其吸附机理是SUL分子结构中的N-甲基吡咯烷、酰胺和苯磺酰胺基团上的氨基与MAA自组装形成的吸附识别位点空穴;该MIP能识别SUL及其结构类似物阿米舒必利和泰必利,特异性吸附率分别为68.35%, 66.72%和58.8%.  相似文献   

8.
BACKGROUND: Adsorption of puerarin on native resin polystyrene (PS) and oligo‐β‐cyclodextrin‐coupled matrix (PS‐CDP) was studied for interactions between the adsorbents and the adsorbates. The sorption mechanism on PS‐CDP was investigated using the isosteric heat approach and nuclear magnetic resonance (NMR) spectroscopy. RESULTS: The equilibrium adsorption data of puerarin on the two matrices PS and PS‐CDP (polystyrene‐based matrix before and after coupling by oligo‐β‐cyclodextrin) in the temperature range 288–318 K were well fitted to the Freundlich adsorption isotherm model. The energetic heterogeneity of the media was observed based on the result that the values of isosteric enthalpy were quantitatively correlated with the fractional loading of puerarin adsorption. The more heterogeneous surface of PS‐CDP compared with PS was attributed to the complexation between puerarin and β‐cyclodextrin (β‐CD). NMR studies validated the formation of an inclusion complex puerarin/β‐CD. CONCLUSION: Thermodynamic and NMR studies confirmed that multi‐interaction cooperatively governed the isolation of puerarin from aqueous solution on PS‐CDP matrix. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
A novel ion‐imprinted polymer (IIP) using (6‐O‐butene diacid ester)‐β‐cyclodextrin (β‐CD‐MAH) as the functional monomer and copper ions as the template was developed for Cu2+ sensing. First, reactive β‐cyclodextrin (β‐CD) monomers with vinyl carboxylic acid functional groups were synthesised and were co‐polymerised with styrene via radical polymerisation. Then, the β‐CD copolymers were complexed with Cu2+ in order to obtain the IIP. The imprinting effect was realised by removing the template ions from the imprinted polymer. The structure, composition and morphology of the IIP were characterised by Fourier transform IR spectroscopy, energy‐dispersive spectroscopy and field‐emission SEM. The adsorption capacity was investigated by UV–visible spectroscopy in batch operation mode. The maximum adsorption capacity for the Cu2+ template ions was 28.91 mg g?1, and the adsorption selectivity was clearly illustrated from the increased sorption affinity towards Cu2+ ions over other competing ions. The adsorption was affected by the pH of the aqueous medium, and enhanced adsorption capacity was observed at pH 5. The prepared IIP could be used 10 times after its regeneration without significant loss of the adsorption capacity. © 2018 Society of Chemical Industry  相似文献   

10.
以红霉素为模板分子、甲基丙烯酸为功能单体、乙二醇二甲基丙烯酸酯为交联剂,采用沉淀聚合法制备了粒径均一的红霉素纳米分子印迹聚合物微球,优化了分子印迹聚合物的合成条件,确定了模板分子与功能单体的最佳摩尔比为1:3,对其进行了表征. 结果表明,所制聚合物对红霉素的实际最大吸附量可达202.12 mg/g,吸附约200 min达到平衡,对红霉素具有良好的选择性吸附能力.  相似文献   

11.
Two molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10?4 and 6 × 10?5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g?1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles. © 2018 Society of Chemical Industry  相似文献   

12.
Eight molecularly imprinted polymers (MIP1–MIP8) were synthesized with different functional monomers and porogens using 3,4‐dihydroxyphenylacetic acid (DOPAC) as a template. Thermal, radical bulk polymerization was employed in the presence of ethylene glycol dimethacrylate as a cross‐linker. A computational analysis indicated that complexes with four molecules of 4‐vinylpyridine, 1‐vinylimidazole and acrylonitrile had high positive enthalpies of formation. The polymers synthesized with these monomers showed an imprinting factor below 1. Polymer MIP8 synthesized with allylamine as the functional monomer, with the highest energy of interaction with DOPAC, was characterized by the highest imprinting factor equal to 1.91. Examination of the binding ability of DOPAC and a group of structurally related compounds showed that the strong interactions between amine groups in the polymer and carboxylic groups in the analyte governed the recognition mechanism. The Langmuir adsorption model and the pseudo‐second‐order mechanism properly evaluated the MIP8 and non‐imprinted polymer 8 adsorption characteristics. Scatchard analysis revealed that MIP8 had two classes of heterogeneous binding sites with Kd(1) = 0.12 µmol L?1 and Kd(2) = 1.46 µmol L?1. Finally, the potential application of MIP8 for separation of DOPAC was demonstrated. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
A β‐cyclodextrin derivative grafted chitosan (CDD‐C) was synthesized with chitosan and carboxymethyl‐β‐cyclodextrin (β‐CD). Its structure was characterized by elemental, infrared spectra, and X‐ray diffraction analyses. The degree of substitution by the carboxymethyl‐β‐CD moiety achieved 0.27 with the addition of DMF to the reaction solution. The results are in agreement with the expectations. The static adsorption properties for guanosine, cytidine, and uridine were studied. Experimental results demonstrated that CDD‐C had higher adsorption capability for guanosine than cytidine and uridine, and the adsorption capacity for guanosine was 74.20 mg/g. The adsorption capacity was greatly influenced by pH, time, and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of β‐CD for guanosine. This novel derivative of chitosan is expected to have wide applications in separation, concentration, and analysis of guanosine, cytidine, and uridine in biological sample. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3050–3055, 2007  相似文献   

14.
On the basis of the non‐covalent interaction between template and monomer, porous molecularly imprinted polymers (MIPs) were synthesized by a thermal‐initiated polymerization method using huperzine A as template, acrylamide, or methacrylic acid as function monomer, ethylene glycol dimethacrylate as cross‐linking agent. The interaction between template and functional monomers was studied by UV spectrophotometry, which showed a formation of huperzine A‐monomer complexes with stoichiometric ratio of 1 : 2 in the pre‐polymerized systems. The resultant MIP particles were tested in the equilibrium binding experiment to analyze their adsorption ability to huperzine A, and were characterized by Fourier Transform Infrared (FTIR) study. The recognition properties of MIP were estimated in solid‐phase extraction by selecting four compounds (isolated from the Chinese herb Huperzia serrata) as substrates, and were compared with and prior to those of the NIP. High affinity and adsorption of MIP1 which was prepared in chloroform with huperzine A as imprinted molecule, and acrylamide (AM) as functional monomer, made an attractive application of MIP1 in separation processes. In final, using MIP1 solid‐phase extraction micro‐column, huperzine A was enriched and separated from the real extraction sample of Huperzia serrata. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
In this study, paper coated with a polyamide film containing a molecularly imprinted polymer (MIP) of benzalkonium chloride (BKC) is prepared. Its BKC adsorption ability and selectivity for BKC adsorption are investigated. The MIP is prepared by agitating an ethylenediamine solution containing an azo initiator, BKC as a template material, and methacrylic acid (MAA) as the functional monomer. First, filter paper soaked in this mixture is impregnated with a cyclohexane solution of terephthaloyl chloride and a BKC–MAA–MIP-containing polyamide film is prepared on the surface of the paper. Paper containing BKC–MAA–MIP adsorbs BKC. The paper with the highest BKC removal efficiency is prepared under the following conditions: 4 mL MAA functional monomer, 2.5 w/v% ethylenediamine, and 10 min MIP synthesis time. The paper with BKC–MAA–MIP selectively adsorbs BKC from a solution containing BKC, tetracycline hydrochloride, and caffeine. Thus, a polyamide film containing BKC-MAA-MIP formed on paper can effectively and selectively remove BKC from aqueous environments.  相似文献   

16.
The molecular imprinting technique is a new method for preparing molecularly imprinted polymers (MIPs) with specific molecular recognition sites for certain target molecules. In this study, a novel, facile preparation method was presented, called “seed precipitation polymerization,” for the synthesis of MIPs via surface imprinting and a support matrix. In the polymerization process, kaempferol was used as the template molecule, methacrylic acid as the functional monomer, nano‐TiO2 as the support, azodiisobutyronitrile as the initiator, and ethylene glycol dimethacrylate as the crosslinker in acetonitrile solvent. The synthesized T‐MIP and MIP were analyzed by infrared spectroscopy and scanning electron microscopy. In addition, the obtained polymers were evaluated by adsorption isotherms and dynamic curves for their selective recognition properties for kaempferol. The results show that T‐MIP shows regular spherical particles; the adsorption dynamic curves of T‐MIP show that the adsorption capacity increases with time and reaches a maximum value and then finally reaches equilibrium, and the T‐MIP exhibits a higher affinity for kaempferol than does the MIP. The adsorption follows pseudo‐second‐order kinetics, the Freundlich adsorption equation fits the experimental data well, and there is strong evidence for multiple‐layer adsorption. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44888.  相似文献   

17.
In this work, 2,4-dinitrophenol (2,4-DNP), a new molecularly imprinted polymer (MIP) with excellent performance was synthesized in ethanol by the sol–gel method using 3-aminopropyltriethoxysilane as functional monomer on the surface of silica particles. The structure and morphology of MIP were characterized via scanning electron microscopy, nitrogen adsorption–desorption analysis, infrared spectra, and thermogravimetry analysis. Results demonstrated that MIP had excellent selectivity toward the template molecule (2,4-DNP) with an imprinting factor of 9.55 and a maximum static adsorption capacity of 114.7 mg g−1. Data obtained from the adsorption isotherm of 2,4-DNP were fitted well with the Freundlich isotherm model, and the adsorption process can be described by the pseudo-second-order model. The investigation of adsorption mechanism revealed that the specific recognition process of MIP toward 2,4-DNP was dominated by the hydrogen bond and molecular structure. By employing as a sorbent, the as-prepared MIP was applied to recognize and remove 2,4-DNP in poster paper, nonwoven fabric and brown curtain with recoveries in the range from 85.74 to 100.00%. However, the MIP can effectively remove 2,4-DNP after five cycles.  相似文献   

18.
Adsorption isotherms of caffeine on molecular imprinted polymer   总被引:1,自引:0,他引:1  
A molecular imprinted polymer (MIP) using caffeine as the template and methacrylic acid (MAA) as the functional monomer was prepared. Acetonitrile was used as the porogen with ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2′-azobis(isobutyronitrile) (AIBN) as the initiator. By a linear and nonlinear regression analysis, the experimental parameters in the equilibrium isotherms were estimated. Then, the linear and quadratic equations for concentration and sorbents to adsorption amounts were expressed, and the adsorption equilibrium data were also correlated into the Freundlich isotherm model. Comparisons of caffeine adsorption isotherm on C18 particles as well as the molecular imprinted polymer were made. The results showed that the caffeine-imprinted polymer showed extraordinarily higher adsorption ability than C18 particles.  相似文献   

19.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

20.
Novel, temperature‐responsive molecularly imprinted polymers (TMIPs) based on potassium hexatitanate whiskers for selectively adsorbing sulfadiazine (SDZ) from aqueous media were prepared with methacrylic acid (MAA) and 4‐vinylpyridine (4‐VP) as cofunctional monomers and N‐isopropyl acrylamide (NIPAM) as a temperature‐responsive monomer. The template–monomer interactions were studied by molecular simulation. In particular, the effects of different kinds of crosslinkers on the selective recognition ability of the TMIPs in water media were investigated. The temperature–responsive adsorption performance and phase behavior of the molecularly imprinted polymers were studied by batch‐mode binding experiments, swelling experiments, and contact angle testing. The results demonstrate that the combination of MAA, 4‐VP, and NIPAM was a favorable temperature‐responsive imprinted system for SDZ in water, and the cocrosslinking agent of ethylene glycol dimethacrylate (EGDMA) and N,N′‐methylene bisacrylamide (MBA) was more suitable compared with either pure EGDMA or MBA. The adsorption kinetics and adsorption isotherms were analyzed by the fitting of different adsorption models. Also, the effect of the temperature on the recovery was investigated by the determination of the spiked SDZ in real‐water samples with solid‐phase extraction and high‐performance liquid chromatography. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41769.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号