首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large amount of work has been published on the tacticity‐properties relationship of isotactic polypropylene (iPP). However, the stereo‐defect distribution dependence of morphology and mechanical properties of β‐nucleated iPP (β‐iPP) is still not clear. In this study, two different iPP resins (PP‐A and PP‐B) with similar average isotacticity but different uniformities of stereo‐defect distribution were selected, their β‐iPP injection molding specimens were prepared, and the morphology evolution and tensile behaviors were studied by means of differential scanning calorimetry (DSC), 2D wide‐angle X‐ray diffraction (2D‐WAXD) and scanning electron microscope (SEM). DSC results showed that with the same concentration of β‐nucleating agent (0.3 wt % WBG‐II), PP‐B with more uniform stereo‐defect distribution exhibited more amount of β‐phase than that of PP‐A with less uniform stereo‐defect distribution, indicating that PP‐B is more favorable for the formation of β‐phase. SEM results showed that PP‐B formed more amount of β‐crystals with relatively high structural perfection, while in PP‐A a mixed morphology of α‐ and β‐phase with obviously higher amount of structural imperfection emerges. The results of room‐temperature tensile test indicated that the yield peak width of PP‐B was obviously wider, and the elongation at break of PP‐B was higher than that of PP‐A, showing a better ductile of PP‐B. The morphology evolution results of SEM, 2D‐WAXD and DSC suggest that, a combination of lamellar deformation and amorphous deformation occurred in PP‐A, while only amorphous deformation mainly took place in PP‐B, which was thought to be the reason for the different tensile behaviors of the samples. In the production of β‐PP products via injection molding, the uniformity of stereo‐defect distribution was found to be an important factor. PP with more uniform distribution of stereo‐defect favors the formation of large amount of β‐phase with high perfection, which exhibit superior ductile property. The related mechanism was discussed. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40027.  相似文献   

2.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

3.
In this study, the crystallization behavior of the β‐isotactic polypropylene (β‐iPP) samples nucleated by a rare earth based β‐nucleating agent (β‐NA) WBG‐II and a metal salts compound β‐NA NAB83 (denoted as WPP and NPP, respectively) under different cooling conditions were comparatively investigated. The thermal conditions such as the cooling rate, isothermal crystallization temperature, isothermal crystallization time, and the subsequent cooling to room temperature. The results of WAXD, SEM, and nonisothermal crystallization reveal that under the same processing conditions, the crystallite size of NPP is smaller, which arrange more compactly as compared with WPP. Meanwhile, NPP has shorter crystallization rate and higher β‐nucleation selectivity, but WPP can crystallization at wider temperature range. The results of isothermal crystallization showed that NPP has higher selectivity and higher β‐nucleation efficiency, which favors the formation of high proportion of β‐phase at the isothermal crystallization temperature of 110–130°C with and without subsequent cooling; WPP has lower selectivity, which can only induce high content of β‐phase under isothermal crystallization without subsequent cooling to 25°C. In tuning the crystallization behavior and the properties of β‐PP, the joint influence of the efficiency and selectivity of the β‐NA, and the thermal conditions should be taken into consideration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40115.  相似文献   

4.
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767.  相似文献   

5.
Polymer processing methods generally play a crucial role in determining the development of microstructure in the fabricated product. In this study, isotactic polypropylene (iPP) melt containing 0.05 wt % β‐nucleating agent (β‐NA) was extruded via a melt flow rate indicator. The molten extrudate was stretched into a fiber upon various take‐up velocities (TVs). The microstructures of the fiber were investigated by differential scanning calorimeter, two‐dimensional wide‐angle X‐ray diffraction, and small‐angle X‐ray scattering. Also, its tensile properties (including tensile strength, modulus, elongation at break, and toughness) were measured by tensile test. Interestingly, the tensile strength (135.0 MPa) of a melt‐spun β‐nucleated iPP fiber fabricated at 400 cm/min was enhanced by 115.2%, compared with that (62.7 MPa) prepared at 100 cm/min, with a considerable increment in toughness (from 661 to 853 MJ/m3). The enhancement mechanism for tensile properties was discussed based on the microstructures. This work offers a simple approach to prepare β‐nucleated iPP fibers with excellent strength and toughness. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43454.  相似文献   

6.
In this study, we have prepared two β‐nucleated isotactic polypropylene/graphene oxide (β‐iPP/GO) composites with different stereo‐defect distribution (named NPP‐B and NPP‐A). The role of stereo‐defect distribution on the crystallization and polymorphic behaviors of samples with varied melt structures were investigated by scanning electron microscopy (SEM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC). It was found that NPP‐B (who with more uniform stereo‐defect distribution) prefers β‐crystallization; while NPP‐A has a strong α‐nucleation tendency and can hardly form β‐phase; as fusion temperature decreases from 200°C to 168°C, the relative percentages of β‐phase of NPP‐B and NPP‐A exhibit the same trends, suggesting that the β‐nucleation efficiency is enhanced by the ordered structure effect (OSE) and causes β‐crystallization even in NPP‐A. Moreover, the lower limiting temperatures of Region‐II of NPP‐B and NPP‐A are the same but their upper limiting temperatures are different, indicating the uniformity of stereo‐defect distribution also influences temperature window for OSE. Related mechanisms were discussed. POLYM. ENG. SCI., 59:1097–1104 2019. © 2019 Society of Plastics Engineers  相似文献   

7.
In this work, the synergistic effects of β‐modification and impact polypropylene copolymer (IPC) on brittle–ductile (B–D) transition behavior of polypropylene random copolymer (PPR) have been investigated. It is interesting to find that adding both IPC and β‐nucleating agent into PPR has three effects: (i) leading to a significant enhancement in β‐crystallization capability of PPR, (ii) contributing to the shift of B–D transition to lower temperatures, (iii) increasing the B–D transition rate. The reason for these changes can be interpreted from the following two aspects. On one hand, the transition of crystalline structure from α‐form to β‐form reduces the plastic resistance of PPR matrix, thus causing the initiation of matrix shear yielding much easier during the impact process. On the other hand, the well dispersed rubbery phase in IPC with high molecular mobility at relatively low temperatures is beneficial to the shear yielding of PPR matrix and, subsequently, the great improvement in impact toughness of the ternary blends. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
The tear resistance of the polypropylene homopolymer (HPP)/ethylene 1‐octene copolymer (POE) alternating multilayered sheets, which were prepared through multilayered coextrusion, was evaluated. Polarized optical microscope (POM) photographs revealed that HPP and POE layers aligned alternately vertical to the interfaces and continuously parallel to the extrusion direction. Tear results demonstrated the conventional blends had less tear‐resistant than the multilayered samples. Large plastic deformation of HPP layer occurred in the multilayered structure during the stable crack growth, causing the tear energy to increase with the number of layers increasing. The measurements of PCMW2D IR and WAXD revealed that the large plastic deformation had a direct relationship with the crystal structure and termination of micro‐cracks by interface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43298.  相似文献   

9.
A series of β‐ketoimine ligands with various fluorine substitutions on the N‐aryl ring and the corresponding copper complexes were synthesized. The fluorosubstituents exerted significant effects on the structures and catalytic activities of the copper complexes. X‐ray diffraction revealed that the copper(II) central ions were coordinated by two trans‐oriented β‐ketoimino ligands with delocalized double bonds. Complex 2b (with mono‐o‐fluorosubstitution on the N‐aryl moiety) adopted a central symmetric square planar structure, whereas complex 2f (with bis‐o‐fluorosubstitution) had a distorted square planar structure with a dihedral angle of 28.2°. The Cu? N bond length in 2f was appreciably shorter than that in 2b . When activated by modified methylaluminoxane, the copper complexes effectively polymerized methyl acrylate. Furthermore, substitution with more fluorine atoms resulted in a higher activity. The catalytic activity of the pentafluorosubstituted complex 2h reached 57.5 kg (mol of Cu)?1·h?1 under optimized conditions; this was the highest value reported up to this point for copper complexes in acrylic monomer polymerization. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41178.  相似文献   

10.
The effects of ordered structure on isothermal crystallization kinetics and subsequent melting behavior of β‐nucleated isotactic polypropylene/graphene oxide (iPP/GO) composites were studied using differential scanning calorimetry. The ordered structure status was controlled by tuning the fusion temperature (Tf). The results showed that depending on the variation of crystallization rate, the whole Tf range could be divided into three regions: Region I (Tf > 179 °C), Region II (170 °C ≤ Tf ≤ 179 °C) and Region III (Tf < 170 °C). As Tf decreased from Region I to Region III, the crystallization rate would increase substantially at two transition points, due to the variation of the ordered structure status. Calculation of Avrami exponent n indicated that the ordered structure induced the formation of two‐dimensional growing crystallites rather than three‐dimensional growing crystallites. Moreover, in the case of isothermal crystallization, the ordered structure effect (OSE) can also greatly increase the relative content of β‐phase (βc). In Region II, OSE took place, resulting in evident increase of βc, achieving 92.4% at maximum. The variation of the isothermal crystallization temperature (Tiso) had little influence on the Tf range (Region II) of the OSE. The higher Tf in Region II was more favorable for the formation of higher βc. The ordered structure was favorable for the improvement of the nucleating efficiency of β‐nucleating agent (β‐NE), and was more effective for the improvement of lower β‐NE. © 2018 Society of Chemical Industry  相似文献   

11.
The self‐diffusion coefficients of C6–C16 long‐chain α‐olefins and their mixtures in semi‐crystalline polyethylene were measured through the pulsed field gradient nuclear magnetic resonance (PFG‐NMR). The effects of chain length, polyethylene (PE) type, and co‐monomer type in PE on the diffusion coefficients were investigated. Moreover, the influence of halohydrocarbon, cycloalkanes, and arene solvents on the diffusion coefficients of C12 α‐olefin in PE was characterized. The results have demonstrated that the diffusion coefficient of the single‐component α‐olefin in PE decreases exponentially with the increase of the carbon number of α‐olefin, and the crystallinity and crystal morphology of PE play a more important role than the co‐monomer type in determining the diffusion coefficients of α‐olefins. In addition, the apparent diffusion coefficients were used to represent the diffusion behaviors of the α‐olefin mixtures in PE. Owing to the presence of other hydrocarbon solvents, namely trichloromethane, cyclohexane, and benzene, the diffusion coefficients of C12 long‐chain α‐olefin in PE are significantly enhanced, and such promoting effect of the hydrocarbon solvents in polyolefin elastomer (POE) is much stronger than those in high‐density polyethylene (HDPE) and linear low‐density polyethylene (LLDPE). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44143.  相似文献   

12.
Poly(L ‐lactide‐co‐ε‐caprolactone) [P(LLA‐CL)], which is used in biodegradable biomedical materials such as drug‐delivery systems, surgical sutures, orthopedics, and scaffolds for tissue engineering, has been reported to crystallize upon storage in a dry state even at room temperature; this results in rapid changes in the mechanical properties. In biomedical applications, P(LLA‐CL) is used in the presence of water. This study investigated the effects of water on the crystallization of P(LLA‐CL) at 37°C in phosphate buffered solution, which was anticipated to alter its mechanical properties and hydrolytic degradation behavior. Surprisingly, the crystallinity of P(LLA‐CL) in the presence of water rapidly increased in 6–12 h and then slowly increased up to 120 h. The period of time for the initial rapid crystallization increase in the presence of water was much shorter than that in the absence of water. The obtained information would be useful for the selection, preparation, and use of P(LLA‐CL) in various biomedical applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A highly novel nano‐CaCO3 supported β‐nucleating agent was employed to prepare β‐nucleated isotactic polypropylene (iPP) blend with polyamide (PA) 66, β‐nucleated iPP/PA66 blend, as well as its compatibilized version with maleic anhydride grafted PP (PP‐g‐MA), maleic anhydride grafted polyethylene‐octene (POE‐g‐MA), and polyethylene‐vinyl acetate (EVA‐g‐MA), respectively. Nonisothermal crystallization behavior and melting characteristics of β‐nucleated iPP and its blends were investigated by differential scanning calorimeter and wide angle X‐ray diffraction. Experimental results indicated that the crystallization temperature (T) of PP shifts to high temperature in the non‐nucleated PP/PA66 blends because of the α‐nucleating effect of PA66. T of PP and the β‐crystal content (Kβ) in β‐nucleated iPP/PA66 blends not only depended on the PA66 content, but also on the compatibilizer type. Addition of PP‐g‐MA and POE‐g‐MA into β‐nucleated iPP/PA66 blends increased the β‐crystal content; however, EVA‐g‐MA is not benefit for the formation of β‐crystal in the compatibilized β‐nucleated iPP/PA66 blend. It can be relative to the different interfacial interactions between PP and compatibilizers. The nonisothermal crystallization kinetics of PP in the blends was evaluated by Mo's method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Detailed characterization of the crystallization behavior is important for obtaining better structure property correlations of the isotactic polypropylene (iPP), however, attributed to the complexity in ZN‐iPP polymerization, the relationship between crystallization behavior and the stereo‐defect distribution of iPP is still under debate. In this study, the crystallization kinetics of the primary nucleation, crystal growth and overall crystallization of two iPP samples (PP‐A and PP‐B) with nearly same average isotacticity but different stereo‐defect distribution (the stereo‐defect distribution of PP‐B is more uniform than PP‐A) were investigated. The results of isothermal crystallization kinetics showed that the overall crystallization rate of PP‐A was much higher than that of PP‐B; but the analysis of self‐nucleation isothermal crystallization kinetics and the polarized optical microscopy (POM) observation indicated that the high overall crystallization rate of PP‐A was attributed to the high primary nucleation rate of the resin. The stereo‐defect distribution plays an important role in determining both the nucleation kinetics and crystal grow kinetics, and thus influence the overall crystallization kinetics. A more uniform distribution of stereo‐defects restrains the crystallization rate of iPP, moreover, it has more influence on nucleation kinetics, comparing with the crystal growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Molecular structure and reinforcement heavily influence the crack growth resistance of polypropylene materials. Aim of this study is to investigate the fatigue behavior of different unreinforced and reinforced tough polypropylene materials used for piping applications. Due to high resistance against crack growth, these materials cannot be tested in the application relevant quasi‐brittle failure mode within feasible amounts of time. In this work, the new cyclic cracked round bar test, developed for tough polyethylene materials, has been examined as a possible method to characterize this important type of failure mode in homo‐, random‐, and reinforced polypropylene. Even though molecular mass distribution, which is often used to explain differences in crack growth resistance of polymers, was similar for unreinforced materials, fatigue lifetimes differed greatly. The mismatch of molecular mass and fatigue lifetime was mainly attributed to the different buildup and morphology of the base polymer. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43948.  相似文献   

16.
The influence of a nonpigmenting β‐nucleating additive in the crystallization of isotactic polypropylene (iPP) is investigated by differential scanning calorimetry and X‐ray diffraction. It is found that this additive induces the formation of a very high level of the trigonal modification of iPP. The crystallization and melting behavior of the nucleated systems are studied as a function of the cooling and heating rates and the control of the final temperature during the cooling process. The nucleating agent exerts an important effect on the crystallization temperatures and the polymorphic transitions of iPP, delaying the β–α recrystallization process through an increase in the stability of the trigonal crystals. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 531–539, 2002  相似文献   

17.
The oriented “shish–kebab” structure and β‐crystal can enhance the mechanical properties of polypropylene products. In this regard, equipment and β‐nucleation agents have been developed or modified to form shish–kebab and β‐crystal. However, the effect of shish–kebab/β‐crystal proportion on the mechanical properties of polypropylene remains unclear. The answer is crucial but remains a challenge because of the difficulty in manipulating the shish–kebab proportion. In this work, we used a self‐made multiflow vibrate‐injection molding, which can provide a controllable shear flow, to produce samples with different shear‐layer thicknesses. The shish–kebab proportion was represented by R, which is the thickness ratio of the shear layer to that of the whole sample. Results showed that the tensile strength exponentially increased, whereas the elongation at break exponentially decreased, with R. The impact strength remained constant with R, indicating that the shish–kebab and β‐crystal possessed similar toughening effects. This work proposes a schematic to interpret the strengthening mechanism involved and presents a method of establishing and controlling the mechanical properties of polypropylene samples by using shish–kebab structures and β‐crystals. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45052.  相似文献   

18.
Poor physical properties resulting from low interfacial interactions between hydrophilic biopolymers and hydrophobic thermoplastic matrices have been one of the biggest obstacles in preparing quality biomass materials. This study concentrates on the effects of nano‐TiO2 on the properties and structure of starch/poly (ε‐caprolactone) (PCL) composites. The molecular and crystal structures of the composites were characterized by using Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), X‐ray diffraction (XRD), and field emission scanning electron microscope. The results indicated that an interpenetrating network structure formed by adding nano‐TiO2 into starch/PCL composites. The DSC and XRD analysis indicated that the crystallinity degree and the crystallization rate of the composites reduced, whereas the crystal form and crystal size were unchanged. The results also showed that the mechanical properties and water resistance of the composites were improved significantly with the addition of nano‐TiO2, whereas their transparency decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4129–4136, 2013  相似文献   

19.
We herein report the effects of plasticizer content (1–5 wt %) on the structure, non‐isothermal crystallization kinetics, thermal stability, and rheological property of a new type of multicomponent polyarylate (PAR). Fourier transform infrared spectra reveal the presence of a specific interaction between plasticizer and PAR chains, indicating the good dispersion of the plasticizer at the molecular level. The plasticizer influences on the non‐isothermal crystallization behavior of the PAR in two different ways: a mobility enhancer of PAR chains and an impurity to the crystallization of PAR. The melt‐crystallization temperature (Tmc) and enthalpy (ΔHmc) of the plasticized PARs at cooling runs are higher than those of the neat PAR, which is owing to the enhanced mobility of PAR chains by the plasticizer. On the other hand, the non‐isothermal crystallization rates at different cooling rates of 5–40 °C/min are slower for the PARs with higher plasticizer contents, which is due to the impurity effect of the plasticizer on the melt‐crystallization of PARs. Although the PARs with 1–5 wt % plasticizer have lowered thermal decomposition temperatures, compared to the neat PAR, they are thermally stable up to ~400 °C. The complex melt viscosity of PAR with only 1 wt % plasticizer is far lower than that of the neat PAR. Overall, it is found that only 1 wt % plasticizer is quite effective to facilitate the melt‐processibility and to increase the crystallinity of PAR. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45704.  相似文献   

20.
The non‐isothermal crystallization behavior, the crystallization kinetics, the crystallization activation energy and the morphology of isotactic polypropylene (iPP) with varying content of β‐nucleating agent were investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The DSC results showed that the Avrami equation modified by Jeziorny and a method developed by Mo and co‐workers could be successfully used to describe the non‐isothermal crystallization process of the nucleated iPPs. The values of n showed that the non‐isothermal crystallization of α‐ and β‐nucleated iPPs corresponded to a tridimensional growth with homogeneous and heterogeneous nucleation, respectively. The values of crystallization rate constant showed that the rate of crystallization decreased for iPPs with the addition of β‐nucleating agent. The crystallization activation energy increased with a small amount (less than 0.1 wt%) of β‐nucleating agent and decreased with higher concentration (more than 0.1 wt%). The changes of crystallization rate, crystallization time and crystallization activation energy of iPPs with varying contents of β‐nucleating agent were mainly determined by the ratio of the content of α‐ and β‐phase in iPP (α‐PP and β‐PP) from the DSC investigation, and the large size and many intercrossing lamellae between boundaries of β‐spherulites for iPPs with small amounts of β‐nucleating agent and the small size and few intercrossing bands among the boundaries of β‐spherulites for iPPs with large amounts of β‐nucleating agent from the SEM examination. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号