首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
Na‐montmorillonite/polyethyleneimine‐g‐poly(methyl methacrylate) (Na‐MMT/PEI‐g‐PMMA) nanocomposite latexes were prepared by soap‐free emulsion polymerization in the aqueous suspension of Na‐MMT. The exfoliated morphology of the nanocomposites was confirmed by XRD and TEM. With the aim of improving morphology and mechanical properties of natural rubber latex (NRL) films, the synthesized Na‐MMT/PEI‐g‐PMMA nanocomposites were mixed with NRL by latex compounding technology. The results of SEM and AFM analysis showed that the surface of NRL/Na‐MMT/PEI‐g‐PMMA film was smoother and denser than that of pristine NRL film while Na‐MMT was dispersed uniformly on the fracture surface of the modified films, which suggested the good compatibility between NRL and Na‐MMT/PEI‐g‐PMMA. The tensile strength of NRL/Na‐MMT/PEI‐g‐PMMA films was increased greatly by 85% with 10 phr Na‐MMT/PEI‐g‐PMMA when Na‐MMT content was 3 wt % and the elongation at break also increased from 930% to 1073% at the same time. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43961.  相似文献   

3.
Acrylic copolymer/montmorillonite (MMT) nanocomposites for warp sizing were prepared in the presence of Na+‐MMT by the in situ intercalative polymerization of acrylic acid, acrylamide, and methyl acrylate in water solution. The properties of the solution and cast film were tested according to an application in sizing process of the nanocomposite size with various MMT contents. The results indicate that, for an exfoliated structure corresponding to the MMT content increasing to 7 wt %, the performance parameters of solution viscosity, glass‐transition temperature, and tensile strength of the film increased and the moisture sorption, abrasion loss, and elongation at break of the film decreased. When the intercalated structure of MMT was 9 wt %, the gathered MMT layers acted as a common inorganic filler in the copolymer matrix, with limited contribution to the properties of the composite. The adhesion work of the nanocomposite solution was calculated by use of the Young–Dupre relation, which showed maximum values at an MMT content of 3 wt % on the surfaces of both the polyester and cellulose films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
In this work, the structural, thermal, mechanical, and biocompatibility characteristics of biopolyester‐based nanocomposites with phyllosilicate clays, namely those of poly(3‐hydroxybutyrate) (PHB) with octadecylamine‐modified montmorillonite (C18MMT), are reported. PHB/clay nanocomposites with various loadings were prepared by melt mixing. X‐ray diffraction measurements and transmission electron microscopy images revealed the coexistence of intercalated and exfoliated states in the produced nanocomposites. Atomic force microscopy imaging also shed light to the morphological characteristics of the pure PHB and the prepared nanocomposites. The thermal stability of the nanohybrid materials was improved with the 5 wt % loading nanocomposite to show the best improvement. In addition, the nanohybrids have lower melting point compared to pure PHB and enhanced storage modulus (E′). Finally, the biocompatibility of pristine PHB and the 5 wt % nanocomposite was assessed by studying the morphology and proliferation of osteoblast cells attached on their surfaces. The results after 3 and 7 days of cell culturing indicate the incorporation of nanoclays does not change the cell adhesion and spreading as compared to those on pure PHB. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41628.  相似文献   

5.
Acrylonitrile–butadiene–styrene (ABS)–clay composite and intercalated nanocomposites were prepared by melt processing, using Na‐montmorillonite (MMT), several chemically different organically modified MMT (OMMT) and Na‐laponite clays. The polymer–clay hybrids were characterized by WAXD, TEM, DSC, TGA, tensile, and impact tests. Intercalated nanocomposites are formed with organoclays, a composite is obtained with unmodified MMT, and the nanocomposite based on synthetic laponite is almost exfoliated. An unintercalated nanocomposite is formed by one of the organically modified clays, with similar overall stack dispersion as compared to the intercalated nanocomposites. Tg of ABS is unaffected by incorporation of the silicate filler in its matrix upto 4 wt % loading for different aspect ratios and organic modifications. A significant improvement in the onset of thermal decomposition (40–44°C at 4 wt % organoclay) is seen. The Young's modulus shows improvement, the elongation‐at‐break shows reduction, and the tensile strength shows improvement. Notched and unnotched impact strength of the intercalated MMT nanocomposites is lower as compared to that of ABS matrix. However, laponite and overexchanged organomontmorillonite clay lead to improvement in ductility. For the MMT clays, the Young's modulus (E) correlates with the intercalation change in organoclay interlayer separation (Δd001) as influenced by the chemistry of the modifier. Although ABS‐laponite composites are exfoliated, the intercalated OMMT‐based nanocomposites show greater improvement in modulus. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
In this study, Na‐montmorillonite was organically modified with cetyltrimethylammoniumbromide (CTAB) and intercalated with in‐situ polymerized indene. Polyindene(PIn)/Organo‐MMT nanocomposites were obtained with three different compositions and coded as: K1: [PIn(94.5%)/O‐MMT(5.5%)], K2: [PIn(92.8%)/O‐MMT(7.2%)], and K3: [PIn(87.9%)/O‐MMT(12.1%)]. These nanocomposites were subjected to full characterization with various techniques. Electrokinetic studies were conducted to reveal the zeta (ζ)‐potential characteristics of the nanocomposites. ζ‐potentials of the materials were observed to decrease with increasing O‐MMT content. The cationic (CTAB) and anionic (sodium dodecylsulfate) surfactants were shifted the ζ‐potentials of the colloidal dispersions to more positive and more negative regions, respectively whereas nonionic surfactant (Triton X‐100) caused almost no change. The pH and temperature were observed to shift the ζ‐potential values of the nanocomposites to more negative and slightly more positive regions, respectively. With the addition of mono (NaCl), di (BaCl2) and three (AlCl3) valent salts, the ζ‐potential of the nanocomposites were shifted to more negative, more positive, and much more positive regions, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Three different loading of 3‐aminopropyltriethoxysilane (APS) was used to modify the Na‐montmorillonite via cation exchange technique. The Na‐MMT and silane‐treated montmorillonite (STMMT) were melt‐compounded with polycarbonate (PC) by using Haake Minilab machine. The PC nanocomposite samples were prepared by using Haake Minijet injection molding technique. The intercalation and exfoliation of the PC/MMT nanocomposites were characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the PC nanocomposites were investigated by using dynamic mechanical analyzer and thermogravimetry analyzer. XRD and TEM results revealed partial intercalation and exfoliation of STMMT in PC matrix. Increase of APS concentration significantly enhanced the storage modulus (E′) and improved the thermal stability of PC nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Soybean oil‐based polymer nanocomposites were synthesized from acrylated epoxidized soybean oil (AESO) combined with styrene monomer and montmorillonite (MMT) clay by using in situ free radical polymerization reaction. Special attention was paid to the modification of MMT clay, which was carried out by methacryl‐functionalized and quaternized derivative of methyl oleate intercalant. It was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of increased nanofiller loading in thermal and mechanical properties of the nanocomposites was investigated by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The nanocomposites exhibited improved thermal and dynamic mechanical properties compared with neat acrylated epoxidized soybean oil based polymer matrix. The desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt % whereas partially exfoliated nanocomposite was obtained in 3 wt % loading. It was found that about 400 and 500% increments in storage modulus at glass transition and rubbery regions, respectively were achieved at 2 wt % clay loading compared to neat polymer matrix while the lowest thermal degradation rate was gained by introducing 3 wt % clay loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2031–2041, 2013  相似文献   

9.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by the esterification of propylene‐g‐maleic anhydride (MAPP) with MMT modified with α,ω‐hydroxyamines. The structural characterization confirmed the formation of ester linkages and the interaction between the silicate layers. In particular, X‐ray diffraction patterns of the modified clays and MAPP/MMT composites showed 001 basal spacing enlargement as great as 0.14–0.62 nm according to the type of α,ω‐hydroxyamine. Thermal characterization by thermogravimetric analysis for the composites revealed increased onset temperatures of thermal decomposition. The melting peak temperature decreased, and the crystallization peak temperature increased; this indicated that MMT retarded the crystallization of MAPP. Compounding PP with MAPP/MMT composites enhanced the tensile modulus and tensile strength of PP. However, the elongation at break decreased drastically even when the MMT content was as low as 0.4–2.0 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1229–1234, 2005  相似文献   

10.
Ethyl vinyl acetate (EVA) copolymers are potential materials for biomedical applications due to their exceptional mechanical properties and biocompatibility. As new medical device designs continue to reduce in size, new materials are required that exhibit improved strength and toughness. In this research, EVA nanocomposites containing synthetic montmorillonite (MMT) are being investigated as new biomedical materials with similar flexibility, biocompatibility, and biostability to neat EVA, but with far superior tensile strength and toughness. We show that the pre‐dispersing of the organo‐MMT prior to melt compounding with the EVA matrix can facilitate nanofiller exfoliation and dispersion in the EVA, thereby enabling significant improvement of EVA nanocomposite performance when high organo‐MMT loading (5 wt %) was added. It was observed that the polarity of pre‐dispersing medium influenced the nanofiller's surfactant organization and distribution, organo‐MMT exfoliation, and dispersion in the EVA, and also interphases of the host copolymer. Consequently, changes in morphology have brought noticeable effects on the mechanical and thermal properties of the EVA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43204.  相似文献   

11.
Poly(L ‐lactic acid)/o‐MMT nanocomposites, incorporating various amounts of organically modified montmorillonite (o‐MMT; 0–10 wt %), were prepared by solution intercalation. The montmorillonite (MMT) was organically modified with dilauryl dimethyl ammonium bromide (DDAB) by ion exchange. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) reveal that the o‐MMT was exfoliated in a poly(L ‐lactic acid), (PLLA) matrix. A series of the test specimens were prepared and subjected to isothermal crystallization at various temperatures (T1T5). The DSC plots revealed that the PLLA/o‐MMT nanocomposites that were prepared under nonisothermal conditions exhibited an obvious crystallization peak and recrystallization, but neat PLLA exhibited neither. The PLLA/o‐MMT nanocomposites (2–10 wt %) yielded two endothermic peaks only under isothermal conditions at low temperature (T1), and the intensity of Tm2 (the higher melting point) was proportional to the o‐MMT content (at around 171°C). The melting point of the test samples increased with the isothermal crystallization temperature. In the Avrami equation, the constant of the crystallization rate (k) was inversely proportional to the isothermal crystallization temperature and increased with the o‐MMT content, especially at low temperature (T1). The Avrami exponent (n) of the PLLA/o‐MMT nanocomposites (4–10 wt %) was 2.61–3.56 higher than that of neat PLLA, 2.10–2.56, revealing that crystallization occurred in three dimensions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
Polyamide 6 (PA6)–montmorillonite (MMT)–melamine cyanurate (MCA) nanocomposites were prepared by the incorporation of interdigitated crystalline MMT–MCA. Their morphologies were assessed by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, thermal stability measurement by thermogravimetric analysis, mechanical properties measurement by tensile tests, and fire retardancy measurement by limiting oxygen index testing and vertical burning testing (UL‐94). The results indicate that MMT–MCA was homogeneously nanodispersed in PA6. Compared with PA6–MCA, the PA6–MMT–MCA nanocomposites showed enhanced thermal stability. The mechanical properties and fire retardancy show that the PA6–MMT–MCA nanocomposites with 5 wt % total loading of MMT–MCA reached UL‐94 V‐2 rating (3.2 mm) and significantly increased the tensile strength of PA6 up to 24.8 % with only 1 wt % MMT in PA6. Through the control the weight ratio of MMT and MCA in MMT–MCA, the Young's modulus of PA6 could be adjusted in a very wide range (300–1100 MPa) because of the dual role of the rigid MMT and nonrigid MCA layers. The reinforced mechanism of the mechanical properties was also investigated. Consequently, the PA6–MMT–MCA nanocomposites with a good nanodispersing ability, improved thermal stability, excellent mechanical properties, and good flame retardancy were obtained and could provide broad prospects for wider applications for PA6 materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46039.  相似文献   

13.
A novel superabsorbent nanocomposite based on partially neutralized acrylic acid, waste polystyrene foam, and sodium type montmorillonite (Na‐MMT) powder was synthesized through emulsion polymerization using N, N′‐methylenebisacrylamide as a crosslinker, 2,2′‐azo‐bisiso‐butyronitrile, ammonium persulfate, and sodium sulfite as mixed redox initiators. The effects of such factors as amount of Na‐MMT, crosslinker, initiator, and neutralization degree on water absorbency of the superabsorbent were investigated. The composites were characterized by Fourier transform infrared spectroscope, X‐ray diffraction, thermo gravimetric analysis, and scanning electron microscope. The results show that acrylic acid monomer successfully grafted onto the polystyrene chain, the layers of Na‐MMT were exfoliated and dispersed in the composite at nano size after copolymerization. The introduction of waste polystyrene foam in the composite increased the water absorbency rate. The addition of Na‐MMT not only enhanced the thermal stability of the composites but also increased its water absorbency, and the optimal water absorbencies of distilled water and saline water (wNaCl = 0.9%) of the nanocomposites were more than 1180 g H2O/g and 72.6 g H2O/g, respectively. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2341–2349, 2007  相似文献   

14.
Nanocomposites based on biodegradable poly(butylene adipate‐co‐terephthalate) (PBAT) and layered silicates were prepared by the melt intercalation method. Nonmodified montmorillonite (MMT) and organo‐modified MMTs (DA‐M, ODA‐M, and LEA‐M) by the protonated ammonium cations of dodecylamine, octadecylamine, and N‐lauryldiethanolamine, respectively, were used as the layered silicates. The comparison of interlayer spacing between clay and PBAT composites with inorganic content 3 wt % measured by X‐ray diffraction (XRD) revealed the formation of intercalated nanocomposites in DA‐M and LEA‐M. In case of PBAT/ODA‐M (3 wt %), no clear peak related to interlayer spacing was observed. From morphological studies using transmission electron microscopy, the ODA‐M was found to be finely and homogeneously dispersed in the matrix polymer, indicating the formation of exfoliated nanocomposite. When ODA‐M content was increased, the XRD peak related to intercalated clay increased. Although the exfoliated ODA‐M (3 wt %) nanocomposite showed a lower tensile modulus than the intercalated DA‐M and LEA‐M (3 wt %) composites, the PBAT/ODA‐M composite with inorganic content 5 wt % showed the highest tensile modulus, strength, and elongation at break among the PBAT composites with inorganic content 5 wt %. Their tensile properties are discussed in relation to the degree of crystallinity of the injection molded samples. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 386–392, 2005  相似文献   

15.
The nonisothermal crystallization kinetics of polyoxymethylene (POM), polyoxymethylene/Na–montmorillonite (POM/Na–MMT), and polyoxymethylene/organic–montmorillonite (POM/organ–MMT) nanocomposites were investigated by differential scanning calorimetry at various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the nonisothermal crystallization process of POM/Na–MMT and POM/organ–MMT nanocomposites. The difference in the values of the exponent n between POM and POM/montmorillonite nanocomposites suggests that the nonisothermal crystallization of POM/Na–MMT and POM/organ–MMT nanocomposites corresponds to a tridimensional growth with heterogeneous nucleation. The values of half‐time and the parameter Zc, which characterizes the kinetics of nonisothermal crystallization, show that the crystallization rate of either POM/Na–MMT or POM/organ–MMT nanocomposite is faster than that of virgin POM at a given cooling rate. The activation energies were evaluated by the Kissinger method and were 387.0, 330.3, and 328.6 kJ/mol for the nonisothermal crystallization of POM, POM/Na–MMT nanocomposite, and POM/organ–MMT nanocomposite, respectively. POM/montmorillonite nanocomposite can be as easily fabricated as the original polyoxymethylene, considering that the addition of montmorillonite, either Na–montmorillonite or organ–montmorillonite, may accelerate the overall nonisothermal crystallization process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2281–2289, 2001  相似文献   

16.
Polystyrene (PS) nanocomposites were prepared by the free‐radical polymerization of styrene in the presence of organically modified montmorillonite (MMT) clays. MMT clay was modified with a low‐molecular‐weight and quarternized block copolymer of styrene and 4‐vinylpyridine [poly(styrene‐b‐4‐vinylpyridine) (SVP)] with 36.4 wt % PS and 63.6 wt % poly(4‐vinylpyridine) (P4VP). Special attention was paid to the modification, which was carried out in different compositions of a solvent mixture of tetrahydrofuran (THF) and water. The swelling behavior of the MMT clay was studied by an X‐ray diffraction technique. The diffraction peak shifted to lower 2θ angles for all of the modified clays, which indicated the intercalation of the quarternized SVP copolymer into the MMT layers in different degrees. Higher interlayer distances, which showed a high degree of block copolymer insertion, were obtained for solvent compositions with THF in water. The resultant nanocomposites were characterized by X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, and dynamic mechanical analysis. The desired exfoliated nanocomposite structure was achieved when the MMT modification was conducted in 50 or 66 wt % THF, whereas the other modifications all resulted in intercalated structures. The resulting exfoliated nanocomposite was found to have better thermal stability and dynamic mechanical performance compared to the others, even with 2% clay loading. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite MMT nanocomposites have been prepared by using different methods: one is from the organophilic montmorillonite (OMT) and the other is from the pristine MMT and reactive compatibilizer hexadecyl trimethyl ammonium bromide (C16). In this study, different kneaders were used (twin‐screw extruder and twin‐roll mill) to prepare nanocomposites. The nanocomposite structures are evidenced by the X‐ray diffraction (XRD) and high‐resolution electronic microscope (HREM). The thermal properties of the nanocomposites were investigated by thermogravimetric analysis (TGA). Moreover, the tensile tests were carried out with a Universal testing machine DCS‐5000. It is shown that different methods and organophilic montmorillonite have influence on EVA/MMT nanocomposites.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2416–2421, 2004  相似文献   

18.
Glycerol polyglycidyl ether (GPE) and polyglycerol polyglycidyl ether (PGPE) were cured with ε‐poly(L ‐lysine) (PL) using epoxy/amine ratios of 1 : 1 and 2 : 1 to create bio‐based epoxy cross‐linked resins. When PGPE was used as an epoxy resin and the epoxy/amine ratio was 1 : 1, the cured neat resin showed the greatest glass transition temperature (Tg), as measured by differential scanning calorimetry. Next, the mixture of PGPE, PL, and montomorillonite (MMT) at an epoxy/amine ratio of 1 : 1 in water was dried and cured finally at 110°C to create PGPE‐PL/MMT composites. The X‐ray diffraction and transmission electron microscopy measurements revealed that the composites with MMT content 7–15 wt % were exfoliated nanocomposites and the composite with MMT content 20 wt % was an intercalated nanocomposite. The Tg and storage modulus at 50–100°C for the PGPE‐PL/MMT composites measured by DMA increased with increasing MMT content until 15 wt % and decreased at 20 wt %. The tensile strength and modulus of the PGPE‐PL/MMT composites (MMT content 15 wt %: 42 and 5300 MPa) were much greater than those of the cured PGPE‐PL resin (4 and 6 MPa). Aerobic biodegradability of the PGPE‐PL in an aqueous medium was ~ 4% after 90 days, and the PGPE‐PL/MMT nanocomposites with MMT content 7–15 wt % showed lower biodegradability. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Butadiene‐isoprene copolymer/montmorillonite (BIR/MMT) nanocomposites were synthesized successfully via in situ anionic polymerization. The results of transmission electron microscopy and X‐ray diffractometer showed that the clay layers were exfoliated and high reaction temperature benefited the exfoliation of layers in BIR/MMT. The polymerization still exhibited “living” characteristics with the addition of organophilic montmorillonite (OMMT). However, the contents of 1,2‐polybutadiene and 3,4‐polyisoprene of the copolymer decreased with the addition of OMMT, because of its absorption effect on N,N,N′,N′‐tetramethylethanediamine as revealed by 1H NMR. Moreover, it was observed that the glass‐transition temperature of the BIR/MMT nanocomposites also decreased when compared with the BIR copolymers. The thermal stability of the nanocomposites was improved, because of the barrier property of exfoliated clay layers. © 2006 Wiley Periodicals, Inc. J Appl PolymSci 102: 1167–1172, 2006  相似文献   

20.
Poly(vinyl alcohol) (PVA)/clay nanocomposites were synthesized using the solution intercalation method. Na ion‐exchanged clays [Na+–saponite (SPT) and Na+–montmorillonite (MMT)] and alkyl ammonium ion‐exchanged clays (C12–MMT and C12OOH–MMT) were used for the PVA nanocomposites. From the morphological studies, the Na ion‐exchanged clay is more easily dispersed in a PVA matrix than is the alkyl ammonium ion‐exchanged clay. Attempts were also made to improve both the thermal stabilities and the tensile properties of PVA/clay nanocomposite films, and it was found that the addition of only a small amount of clay was sufficient for that purpose. Both the ultimate tensile strength and the initial modulus for the nanocomposites increased gradually with clay loading up to 8 wt %. In C12OOH–MMT, the maximum enhancement of the ultimate tensile strength and the initial modulus for the nanocomposites was observed for blends containing 6 wt % organoclay. Na ion‐exchanged clays have higher tensile strengths than those of organic alkyl‐exchanged clays in PVA nanocomposites films. On the other hand, organic alkyl‐exchanged clays have initial moduli that are better than those of Na ion‐exchanged clays. Overall, the content of clay particles in the polymer matrix affect both the thermal stability and the tensile properties of the polymer/clay nanocomposites. However, a change in thermal stability with clay was not significant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3208–3214, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号