首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Various blending ratios of chitosan/poly (vinyl alcohol) (CS/PVA) blend films were prepared by solution blend method in this study. The thermal properties and chemical structure characterization of the CS/PVA blend films were examined by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and Fourier transform infrared (FTIR). Based upon the observation on the DSC thermal analysis, the melting point of PVA is decreased when the amount of CS in the blend film is increased. The FTIR absorption characteristic is changed when the amount of CS in the blend film is varied. Results of X‐ray diffraction (XRD) analysis indicate that the intensity of diffraction peak at 19° of PVA becomes lower and broader with increasing the amount of CS in the CS/PVA blend film. This trend illustrates that the existence of CS decreases the crystallinity of PVA. Although both PVA and CS are hydrophilic biodegradable polymers, the results of water contact angle measurement are still shown as high as 68° and 83° for PVA and for CS films, respectively. A minimum water contact angle (56°) was observed when the blend film contains 50 wt % CS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Heat‐sealing properties are necessary for packaging materials. Soy protein isolate/polyvinyl alcohol (SPI/PVA) blend film is a biodegradable potential packaging material. We analyzed the effects of PVA content (0–20%), glycerol content (1–3%), and sealing temperature (180–230°C) on the heat‐sealing properties of SPI/PVA blend film. Results showed that SPI/PVA film obtained the desired sealing properties when the PVA content exceeded 15%. The sealing strength increased with the PVA content, reaching a maximum upon blending with 20% PVA and 1% glycerol at 220°C. The temperature at sealing strength was approximately twice that at 180°C. However, glycerol migrated to the surface and hindered the entanglement of macromolecular chains in the sealing interface, thereby resulting in reduction of seal strength. Glycerol vaporization at 204°C led to aesthetically unacceptable blistering in the sealing area. Therefore, the optimum sealing temperature of the blended film was ~200°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40308.  相似文献   

4.
Guar gum (GG) was incorporated into soy protein isolate (SPI) films using a blending solution casting method to form SPI/GG composite films. The effects of SPI and GG contents on the transparency, water susceptibility, mechanical, and gas‐barrier properties of SPI/GG composite films were analyzed. The results showed that SPI/GG composite films with added GG were much more tensile‐resistant, water‐resistant, gas‐barrier properties but less deformable property than SPI control film. The presence of GG also improved film barrier to the light. The analysis results of contact angle measurement, Fourier transform infrared spectroscopy, and scanning electron microscope indicated that GG induced increased network compactness of the composite films which resulted from strong intermolecular interactions, such as hydrogen bonding, that existed between SPI and GG. Findings indicate that GG may be used as a natural means to improve specific properties of SPI films. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43382.  相似文献   

5.
The effect of uniaxial drawing of biodegradable soy protein isolate (SPI) polymer film on mechanical properties was investigated to accelerate the efforts to develop SPI films with improved properties. The films containing 0–30 wt% glycerol were drawn uniaxially up to a draw ratio of 2.5. The mechanical properties of the SPI film increased significantly after uniaxial drawing. The tensile strength of the undrawn film (49.7 MPa) was approximately doubled by subjecting the film to uniaxial drawing to a D.R. of 2.5. Wide‐angle X‐ray diffraction and differential scanning calorimetry measurements did not show evidence of generation of a crystal phase in the drawn SPI films. ATR‐FTIR revealed that the protein film contained mainly α‐helix and β‐sheets secondary structures. Microwave molecular orientation analysis showed that birefringence increased with increasing draw ratios. Mechanical anisotropy of the SPI film via orientation of α‐helix and β‐sheets structure is thought to be responsible for the enhancement of mechanical properties with uniaxial drawing of the SPI films. POLYM. ENG. SCI., 47:374–380, 2007. © 2007 Society of Plastics Engineers.  相似文献   

6.
Electrospinning is a facile method for preparing nanocomposite materials in fiber form. Nanomaterials that have been incorporated within such fibers are usually inorganic in nature. Recently, nanocomposite nanofibers based on poly(vinyl alcohol) (PVA) as the matrix and nanocrystals of α‐chitin (i.e. chitin whiskers; ca 31 nm in width and ca 549 nm in length on average) as the nanofiller have been successfully prepared. In the study reported here, the fibers were further investigated using X‐ray diffraction (XRD) and dynamic mechanical analyses in comparison with the corresponding solvent‐cast films. The average diameters of the PVA/chitin whiskers fibers ranged between 175 and 218 nm. Careful analysis of the wide‐angle XRD patterns of the fiber mats and the films showed that PVA was partially crystalline, and the incorporation of the whiskers within the fibers was confirmed by peaks characteristic to α‐chitin crystals. Dynamic mechanical analysis showed that the fiber mats were weaker than the films and that the relaxation temperatures associated with the glass transition (Tg) of the fiber mats were greater than those of the films. The addition and increasing the amount of the whiskers caused the crystallinity of PVA within the nanocomposite materials to decrease and Tg to increase. The present study shows that the geometry of nanocomposite materials plays a major role in determining their properties. Copyright © 2009 Society of Chemical Industry  相似文献   

7.
To promote the heat‐sealing properties of soy protein isolate (SPI) films applied in the packaging field, we mixed a synthetic polymer of poly(vinyl alcohol) (PVA) with SPI to fabricate blend films by a solution‐casting method in this study. To clarify the relationship between the heat‐sealing properties and the heat‐sealing temperature, strength, melting process, crystalline structure, and microstructure, variations of the heat‐sealing parts of the films were evaluated by means of differential scanning calorimetry, tensile testing, scanning electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy, respectively. The test results showed that both the PVA and glycerol contents greatly affected the melting behavior and heat of fusion of the SPI/PVA blends; these blend films had a higher melting temperature than the pure SPI films. The peel strength and tensile strength tests indicated that the long molecular chain of PVA had a main function of enhancing the mechanical properties above the melting temperature. With increasing heat‐sealing temperature, all of the mechanical properties were affected by the microstructure of the interface between the laminated films including the chain entanglement, crystallization, and recrystallization. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Tough biodegradable films were prepared using a poly(vinyl alcohol) (PVA)/poly(vinyl pyrrolidone) (PVP) (1:1) blend with plasticizers of glycerol (GLY), sorbitol (SOR), and their (one to one) mixture. We studied the effect of plasticization on the structural, thermal, and mechanical properties of the PVA/PVP blend films. Fourier transform infrared spectra indicated good miscibility of the two components due to the H‐bonding between the PVA and PVP molecules. The addition of plasticizers reduced the interaction between PVA and PVP, evidenced by an increase in the intensity of PVA diffraction peaks observed in the X‐ray diffraction (XRD) characterization. Thermal degradation of the blends increased as a function of the plasticizer used. GLY affected thermal degradation more than SOR and the mixtures. The incorporation of the plasticizers promoted the growth of PVA crystals as evidenced by XRD patterns and the enthalpy of fusion (ΔHf) obtained by differential scanning calorimetry measurements. The introduction of SOR to the binary blend increased toughness seven times and imparted simultaneous and pronounced improvements to maximum tensile stress and elongation at break. This behavior holds out great promise for the development of a new generation of mechanically robust, yet thoroughly biodegradable materials that could effectively supplant conventional polymers in demanding applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46406.  相似文献   

9.
A series of LDPE/PVA blend films were prepared via a twin‐screw extruder, and their morphology, thermal property, oxygen and water vapor permeation, surface properties, and mechanical properties were investigated as a function of the PVA content. During the extrusion process of the blend films, glycerin improved the compatibility and processing conditions between LDPE and PVA. The melting temperature (Tm), melting enthalpy (ΔHm), crystallinity (%), and thermal stability of the thermal decomposition temperature (T5%) of the LDPE/PVA blend films decreased with increasing PVA content. The oxygen permeabilities of the blend films decreased from 24.0 to 11.4 cm3·cm (m2·day·atm)?1 at 23°C. The WVTR increased from 7.8 to 15.0 g(m2 day)?1 and the water uptake increased from 0.13 to 9.31%, respectively. The mechanical properties of blend films were slightly enhanced up to 2% PVA and then decreased. The physical properties of the blend films strongly varied with the chemical structure and morphology depending on the PVA and glycerin. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41985.  相似文献   

10.
Starch/polyvinyl alcohol (PVA) nanocomposite films by film blowing process were successfully obtained. Starch (1700 g), PVA (300 g), and organically modified montmorillonite (OMMT, 200 g) were blended and plasticized with acetyl tributyl citrate (ATBC) and glycerol (GLY) at weight ratios of 0/100, 5/95, 10/90, 15/85, 20/80, and 25/75. The structural, morphology, barrier, mechanical, and thermal properties of the films, as well as molecular interactions in the nanocomposites were analyzed. The 3.98 nm d‐spacing was the highest in starch/PVA nanocomposite films plasticized with ATBC/GLY ratio of 10/90. The film with ATBC/GLY (5/95) had the lowest WVP (3.01 × 10?10 g m?1 s?1 Pa?1). The longitudinal tensile strength (TS) of starch/PVA nanocomposite films gradually increased from 4.46 to 6.81 MPa with the increase of ATBC/GLY ratios. The Tg steadily increased from 49.2°C to 55.2°C and the ΔH of the nanocomposite films decreased from 81.77 to 51.43 J/g at the presence of ATBC. The addition of ATBC into GLY plasticized starch/PVA/OMMT system enhanced the intermolecular interaction in the nanocomposites. This study proved that ATBC was an excellent compatibilizer in the preparation of starch/PVA/OMMT nanocomposite films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42544.  相似文献   

11.
Poly(vinyl alcohol) (PVA), a well‐known synthetic biodegradable, biocompatible, and hydrophilic polymer is susceptible to several structural modifications, due to the presence of hydroxyl groups in its backbone. PVA was grafted with L (+)‐lactic acid (LA) in molar ratios VA/LA (1/1, 1.5/1, and 2.2/1), manganese acetate as catalyst, by solution polycondensation procedure, resulting the poly(vinyl alcohol)‐g‐lactic acid copolymers. Aqueous solutions of copolymers with glycerol as plasticizer, silver nanoparticles (Ago), and sodium tetraborate as crosslinking agent were used for films casting. The copolymers were characterized by FTIR and 1H RMN spectroscopy, gel permeation chromatography, thermal analyses (DTG and DSC), silver particles size, while films were characterized by mechanical properties and mechanodynamic analyses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
To avoid environmental hazards, packaging industries are aiming to produce biodegradable films for food contact safety and its degradation. LLDPE film containing 1% pro‐oxidant additive was studied for food compatibility in different simulants, at room temperature conditions as per Bureau of Indian Standards (BIS), code of federal regulations (CFR), food and drug administration USA (USFDA), and European Economic Commission directives (EEC) specifications. Overall migration values were well within the specified limits for food contact applications at room temperature filling and storing. The pro‐oxidant loaded LLDPE film was also studied for its degradation behavior with the changes in physical and mechanical properties along with thermal behavior, morphology and infrared spectroscopy. The molecular oxidations of pro‐oxidant‐loaded LLDPE films are severed which increases hydrophilicity. Evidently, the oxidation renders the material much more vulnerable to microbial attack. The combined effect of both photo and bio degradation is most effective for complete degradation of film. The results obtained from these studies revealed that the fine balance (1%) of pro‐oxidant contents in the film guarantees food contact safety and its degradation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39756.  相似文献   

13.
Soy protein isolate (SPI) films plasticized with different contents of short and linear glycerol (G) and hyperbranched dendritic polyglycerol (DPG) in the presence of water were prepared for the first time with kneading and compression molding; these were analyzed in relation to their visual, morphological, microstructural, mechanical, and water‐ and oxygen‐barrier properties. It was shown that the film prepared with a mixture of 15G15DPG (where the numbers represent the weight percentage of the respective compound) had a higher tensile strength (∼14.4%), lower elongation at break (∼85.7%), and improved water‐barrier (∼54.6%) and oxygen‐barrier (∼84.1%) properties compared to the SPI film plasticized only with 30G. The attenuated total reflectance–Fourier transform infrared spectra of the plasticized SPI films indicated that such properties were related to the approximately 11.3% higher conversion of SPI from the α‐helical conformation to the intramolecular β‐sheet structures for the 15G15DPG films. This resulted in finer films with lower surface roughnesses and surface areas. On the other hand, further increases in G and DPG revealed an opposite effect and worsened the properties; this was much more pronounced by the increased DPG amount because of SPI unfolding and aggregation and resulted in microporous films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41837.  相似文献   

14.
“Chilled” meat is more nutritional, healthy and hygienic than the meat kept at ambient temperature. “Poly(propylene carbonate) (PPC) and poly(vinly alcohol) (PVA) were used to prepare biodegradable three‐layer PPC/PVA/PPC films with high barrier and tensile properties. The potential benefits of the developed films were also evaluated on the shelf life of chilled meat products. Compared to PPC film, using 20 wt % PVA as an intermediate layer in PPC/PVA/PPC film remarkably enhanced oxygen barrier performance at 0 and 50 RH % by about 500 times, tensile strength by about 8 times, and Young's modulus by nine times, but no beneficial effect on water vapor barrier performance has been observed. A new “sandwich” type of completely biodegradable material with high barrier was obtained. The application of PPC/PVA20/PPC film as the packaging material of chilled meat was effectively kept the total viable count (TVC) and total volatile basic nitrogen (TVB‐N) to acceptable levels in chilled meats until 19th day of storage at 4°C, however, the spoilage occurred within 11th and 14th days of refrigerated storage in term of TVC and TVB‐N, respectively, in the chilled meats packed with only PPC. Herein, we report that PPC/PVA/PPC three‐layer film can be a promising well‐defined biodegradable material with excellent potential in chilled meat packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41871.  相似文献   

15.
The purpose of this work was to improve the properties of the starch/poly(vinyl alcohol) (PVA) films with nano silicon dioxide (nano SiO2). Starch/PVA/nano‐SiO2 biodegradable blend films were prepared by a solution casting method. The characteristics of the films were assessed by Fourier Transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X‐ray photoelectron spectroscopy (XPS). The results obtained in this study indicated that the nano‐SiO2 particles were dispersed evenly within the starch/PVA coating and an intermolecular hydrogen bond and a strong chemical bond C? O? Si were formed in the nano‐SiO2 and starch/PVA. That the blending of starch, PVA and nano‐SiO2 particles led to uniform starch/PVA/nano‐SiO2 blend films with better mechanical properties. In addition, the nano‐SiO2 particles can improve the water resistance and light transmission of the blend films. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Starch and polyvinyl alcohol (PVA) are biodegradable materials with potentiality to replace the conventional polymers in some applications. The aim of this work was to produce biodegradable films of PVA, cassava starch, and glycerol by thermoplastic extrusion using a mixture design to evaluate the effects of each component in the blend properties. Six formulations were prepared using a twin‐screw extruder coupled with a calender. All the materials were visually homogeneous and presented good processability. Mechanical properties were dependent on both the relative humidity conditioning and the formulation; higher relative humidities detracted the mechanical properties, which was associated to plasticizer effect of the water. Furthermore, the mechanical properties were better when higher concentrations of PVA were used, resulting in films with lower opacity, lower water vapor permeability, and higher thermal stability, according to TGA. Biodegradable materials based on starch, PVA, and glycerol have adequate mechanical and processing properties for commercial production. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42697.  相似文献   

17.
SiC‐PVA nanocomposite films, synthesized using solution‐casting technique were structurally characterized using X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Morphological studies of the SiC‐PVA nanocomposite films were carried out using Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). TEM analysis confirms that the size of SiC nanocrystals present in PVA matrix are 23 ± 9 nm, which is consistent with size calculated using XRD. SiC‐PVA nanocomposite films were further characterized for their thermal and electrical properties. Thermogravimetric/differential thermal analysis (TG/DTA) indicates that the char yield of nanocomposite films containing 3 wt % SiC nanocrystal is ~30% more than PVA. This increase in char yield is an indication of the potency of flame retardation of SiC‐PVA nanocomposite films. I‐V analysis reveals that Schottky mechanism is the dominant conduction mechanism which is responsible for the increase in conductivity of PVA with the addition of SiC nanocrystals. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42464.  相似文献   

18.
Poly‐lactic acid (PLA) nanocomposite film was prepared with untreated and silane treated sepiolite through solution casting method. Sepiolite is found to be promising nano inorganic filler used to prepare biodegradable PLA nanocomposite films. The effect of sepiolite loading on the thermal, mechanical, gas permeability, and water vapor permeability (WVP) properties of the films was investigated. X‐ray diffraction analysis revealed the crystallinity index and well dispersed sepiolite in PLA/sepiolite thin films. By modifying sepiolite, depending on the nanoclay content, the mechanical properties of films were enhanced. PLA/sepiolite films exhibited improved gas barrier and WVP properties compared to neat PLA. The scanning electron microscope results demonstrated that there is a good interface interaction between sepiolite and PLA. The surface treatment of sepiolite increased the adhesion of the PLA matrix to the sepiolite nanoclay which yielded better mechanical properties of the films as compared to pure PLA. It was observed after 1.5% wt sepiolite, nano‐filler tended to agglomerate, therefore mechanical and barrier properties of films decreased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41428.  相似文献   

19.
This study was performed to evaluate the properties of poly(vinyl alcohol) (PVA), gelatin, and PVA–gelatin dispersions and films enriched with Zataria multiflora essential oil (ZO). The results reveal that the ζ potential, particle size, and viscosity values and the antioxidant and antibacterial activities of the dispersions changed significantly with the addition of ZO to the polymer matrix. Changes in the properties of the dispersions suggested the presence of interactions between PVA or gelatin and ZO. Such interactions could affect the mechanical and water‐barrier properties of the films. ZO induced remarkable decreases in the tensile strength, elastic modulus, and swelling and increases in the elongation at break, solubility, and water‐vapor permeability of the films. Scanning electron microscopy analyses proved the impact of ZO on the film morphology, which affected the film properties, including the mechanical and water‐barrier properties. The addition of ZO to the polymer led to a coarse film microstructure because of the hydrophobic ZO aggregates, which produced discontinuities in the film matrix. ZO considerably increased the antioxidant and antibacterial activities of the dispersions. Pseudomonas aeruginosa was the most resistant bacteria. The improved antioxidant and antimicrobial activities of the PVA–ZO and gelatin–ZO indicated that such products could effectively be used as wound dressings. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45351.  相似文献   

20.
Bio‐nanocomposite films based on polyvinyl alcohol/chitosan (PVA/CS) polymeric blend and cellulose nanocrystals (CNC) were prepared by casting a homogenous and stable aqueous mixture of the three components. CNC used as nanoreinforcing agents were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis; then they were characterized and successfully dispersed into a PVA/CS (50/50, w/w) blend to produce PVA/CS–CNC bio‐nanocomposite films at different CNC contents (0.5, 2.5, 5 wt %). Viscosity measurement of the film‐forming solutions and structural and morphological characterizations of the solid films showed that the CNC are well dispersed into PVA/CS blend forming strong interfacial interactions that provide an enhanced load transfer between polymer chains and CNC, thus improving their properties. The obtained bio‐nanocomposite films are mechanically strong and exhibit improved thermal properties. The addition of 5 wt % CNC within a PVA/CS blend increased the Young's modulus by 105%, the tensile strength by 77%, and the toughness by 68%. Herein, the utilization of Moroccan sugarcane bagasse as raw material to produce high quality CNC has been explored. Additionally, the ability of the as‐isolated CNC to reinforce polymer blends was studied, resulting in the production of the aforementioned bio‐nanocomposite films with improved properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号