首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a solid‐state mechanochemical method based on a pan‐mill equipment was used to prepare 60 wt % loading of wood flour (WF) incorporated polypropylene (PP) wood–plastic composite (WPC) with good comprehensive performance. The particle size distribution, crystallization, microstructure, and properties of the prepared WPC were accordingly investigated. The results show that under co‐effects of the strong shear force field of pan milling and the compatibilization of PP grafted maleic anhydride (PP‐g‐MAH), the mixture of PP and WF is effectively pulverized and homogeneously mixed. Meanwhile, the WF particles are adequately activated by exposure of their characteristic functional groups, which is beneficial to the interfacial mechanochemical reaction. PP‐g‐MAH and PP prove to be in situ grafted onto WF particles surface during pan milling, thus resulting in the substantial enhancement in both the dispersion of the added WF fillers in PP matrix and the interfacial bonding. The mechanochemical effects of pan milling could also remarkably promote the heterogeneous nucleation effect of WF particles on PP crystallization and influence the dynamic mechanical behavior of composite. Compared with the unmilled and uncompatibilized composite, the milled and compatibilized WPC material possesses greatly enhanced mechanical performance and shows good application prospects. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43108.  相似文献   

2.
Guaiacol novolak (GCN) and wood‐tar creosote novolak (WCN) were synthesized by the reactions of wood‐derived guaiacol and creosote with formalin, respectively, and used as hardeners of sorbitol polyglycidyl ether (SPE). Thermal and mechanical properties of the cured resins (SPE‐GCN and SPE‐WCN) and their biocomposites with wood flour (WF) were compared with those of the materials prepared by using a petroleum‐based phenol novolak (PN). Although tan δ peak temperatures of SPE‐GCN and SPE‐WCN were lower than that of SPE‐PN, that (58.5–70.8°C) of SPE‐GCN/WF(40–50 wt %) was higher than that (56.6–57.0°C) of SPE‐PN/WF(40–50 wt %). Tensile moduli of all the biocomposites increased by the addition of WF, while tensile strengths were rather reduced. When the biocomposites with the same WF content were compared, tensile modulus of SPE‐GCN/WF was higher than that of SPE‐PN/WF. The 5% weight loss temperatures (346–291°C) of SPE‐GCN and SPE‐GCN/WF were comparable to those (338–284°C) of SPE‐PN and SPE‐PN/WF. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41347.  相似文献   

3.
Polylactic acid (PLA) biocomposites were produced by a combination of extrusion and injection molding with three cellulosic reinforcements (agave, coir, and pine) and contents (10, 20, and 30%). In particular, some samples were subjected to thermal annealing (105 °C for 1 h) to modify the crystallinity of the materials. In all cases, morphological (scanning electron microscopy) and thermal (differential scanning calorimetry, dynamical mechanical thermal analysis) characterizations were related to the mechanical properties (Charpy impact, tensile and flexural tests). The results showed that annealing increased the crystallinity for all the materials produced, but different mechanical behaviors were observed depending on fiber type and content. For example, annealing increased the impact strength and flexural modulus of PLA and PLA biocomposites (agave, coir, and pine), while decreasing their flexural strength. But the main conclusion is that fiber addition combined with thermal annealing can substantially increase the thermal stability of the studied materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43750.  相似文献   

4.
Polypropylene (PP)/nano‐crystalline cellulose (NCC) composites and foams were produced through extrusion compounding combined with injection molding. From the samples produced, a complete morphological, physical, and mechanical analysis was performed to study the effect of NCC concentration (0–5wt %), foaming agent content (0 to 2wt %) and mold temperature (30°C and 80°C). NCC was very effective to reduce cell size (42–71%) and increase cell density (5–37 times) of the foams, while slightly increasing the overall density (2–7%). The results showed that NCC addition increased the specific tensile modulus (15–22%), specific tensile strength (1–14%) and specific flexural modulus (13–26%) of PP, but decreased specific impact strength (10–20%) and specific elongation at break (50–96%). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42845.  相似文献   

5.
Regenerated cellulose‐saponite nanocomposite films were prepared from LiOH/urea solutions, and exhibited high optical transparency and flexibility. The saponite platelets formed intercalated nanolayered structures in the composites. The longitudinal directions of both the cellulose II crystallites and the saponite platelets were preferentially oriented parallel to the film surface in the composites. The good nanodispersibility and high orientation of the saponite platelets in the composite films resulted in high mechanical strength, high Young's modulus, and good thermal dimensional stabilities, and gas barrier properties in the composites, compared with a reference cellulose film. Moreover, the tensile strength and Young's modulus of the composite film reached 241 MPa and 7.7 GPa, respectively, when a simple drawing process was applied to the wet composite film; this is probably owing to the improvement in the orientation of the cellulose II crystallites and saponite platelets in the composites. The composite films also showed high toughness and ductility. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3168–3174, 2013  相似文献   

6.
In this article, the effects of bio‐oil and epoxidized linseed oil (ELO) on water absorption, tangential swelling, decay and insect resistance, thermo‐gravimetric analysis, and mechanical properties of treated wood samples were studied. The bio‐oil used in this article was by‐product of ThermoWood thermal modification process. Linseed oil and hydrogen peroxide were used to prepare ELO. The results indicated that the samples treated with bio‐oil had lower water absorption than that of the control group. The second treatment with ELO significantly reduced further the water absorption. The decay resistance of treated wood samples with 20% of bio‐oil against brown (Coniophora puteana) and white rot (Trametes versicolor) fungi was very high. According to the insect test results, increasing bio‐oil concentration from 10% to 20% significantly decreased surviving rate of Hylotrupes bajulus. Thermo‐gravimetric analysis showed that all treated samples had higher initial deterioration temperature than that of the control group. Regarding the wood strength, the impregnated bio‐oil generally reduced the mechanical properties of wood except modulus of elasticity (MOE). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1562–1569, 2013  相似文献   

7.
This work aims to study the effects of date stone flour (DSF) on morphology, thermal, and mechanical properties of polypropylene (PP) composites in the absence and presence of ethylene‐butyl acrylate‐glycidyl methacrylate (EBAGMA) used as the compatibilizer. DSF was added to the PP matrix at loading rates of 10, 20, 30, and 40 wt %, while the amount of compatibilizer was fixed to the half of the filler content. The study showed through scanning electron microscopy analysis that EBAGMA compatibilizer improved the dispersion and the wettability of DSF in the PP matrix. Thermogravimetric analysis (TGA) indicated a slight decrease in the decomposition temperature at onset (Tonset) for all composite materials compared to PP matrix, whereas the thermal degradation rate was slower. Differential scanning calorimetry (DSC) data revealed that the melting temperature of PP in the composite materials remained almost unchanged. The nucleating effect of DSF was however reduced by the compatibilizer. Furthermore, the incorporation of DSF resulted in the increase of stiffness of the PP composites accompanied by a significant decrease in both the stress and strain at break. The addition of EBAGMA to PP/DSF composites improved significantly the ductility due to the elastomeric effect of EBAGMA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Fully bio‐based and biodegradable composites were compression molded from unidirectionally aligned sisal fiber bundles and a polylactide polymer matrix (PLLA). Caustic soda treatment was employed to modify the strength of sisal fibers and to improve fiber to matrix adhesion. Mechanical properties of PLLA/sisal fiber composites improved with caustic soda treatment: the mean flexural strength and modulus increased from 279 MPa and 19.4 GPa respectively to 286 MPa and 22 GPa at a fiber volume fraction of Vf = 0.6. The glass transition temperature decreased with increasing fiber content in composites reinforced with untreated sisal fibers due to interfacial friction. The damping at the caustic soda‐treated fibers‐PLLA interface was reduced due to the presence of transcrystalline morphology at the fiber to matrix interface. It was demonstrated that high strength, high modulus sisal‐PLLA composites can be produced with effective stress transfer at well‐bonded fiber to matrix interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40999.  相似文献   

9.
Solvent‐free acetylation of microfibrillated cellulose was carried out in order to improve their hydrophobicity. All the samples were filled with low‐density polyethylene. The morphology, mechanical properties, and water uptake of the ensuing composites were investigated. An excessive reaction time leads to degradation of the fibers, which was observed by scanning electron microscopy and fiber quality analysis. The acetylation treatment did not improve the mechanical properties of composites but extensively decreased the moisture absorption of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44933.  相似文献   

10.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

11.
The present study was carried out to investigate the effect of material ‐ blending method and filler content on the physical and mechanical properties of medium density fiberboard (MDF) dust/PP composites. In the sample tests preparation, 40, 50, and 60 wt % of MDF dust were used as lignocellulosic material. Test samples were made to measure the influence of material ‐ blending method and MDF dust content on water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), modulus of rupture (MOR), tensile strength, tensile modulus, and withdrawal strengths of fasteners. The mechanical properties of the test panels significantly decreased with increasing MDF dust contents due to the reduction of interface bond between the fiber and polymer matrix. The WA and TS values also increased by increasing the amount of MDF dust. So with the increase in the MDF dust content, there are more water residence (high hydroxyl groups (? OH) of cellulose and hemicelluloses) sites, thus more water is absorbed, so it can reduce mechanical strength. Furthermore, the results indicated that the physical and mechanical properties of samples made with melt ‐ blend method were more acceptable than those of dry ‐ blend method. Field emission scanning electron microscopy micrographs also showed that the polymer and the filler phase mixed better in the melt ‐ blend method. On the basis of the findings of this research, it appears evident that certain amount of MDF dust material with suitable material ‐ blending method can be used in manufacturing of wood–plastic composites for providing good physical and mechanical properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40513.  相似文献   

12.
Wood plastic composites (WPCs) are a new generation of green composites which can come mostly from recycled materials. This study focuses on the thermal conductivity and mechanical properties of WPCs filled multiwalled carbon nanotubes (MWCNTs). The thermal conductivity increases with increasing amount of MWCNTs and decreases with increasing temperature. By comparing the temperature changes of specimens during heating and cooling processes, WPCs with higher MWCNTs contents presents higher average temperature when heated until equilibrium temperature. From differential scanning calorimeter test, the melting temperatures of MWNTs reinforced WPCs change slightly, but the crystallinity is reduced with the increasing amount of MWCNTs. Based on a series of laboratory experiments carried out to investigate the mechanical performance, it can be concluded that the addition of the MWCNTs decreases the mechanical properties of WPCs due to the decohesion between thermoplastic matrix and MWCNTs particles under stress. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46308.  相似文献   

13.
Syndiotactic polypropylene (SPP)/ethanol swelled microfibrous cellulose (MFC) composite was prepared by a melting mixer, and its morphology and tensile properties were studied. The scanning electron microscope microphotograph did not show the aggregated MFC part up to the 40 wt % MFC loading content, and the Young's modulus was exponentially increasing with the increase of the MFC loading content. These results suggested that the MFC was well‐dispersed in the SPP matrix by an ethanol surfactant work. The Young's modulus was much higher than that of the composite with commonly used fibrous cellulose and moreover, exceeded the theoretical one obtained from the Halpin‐Tsai equation. The differential scanning calorimetry and wide‐angle X‐ray diffraction measurements showed that the MFC acted as a good α‐nucleation agent for SPP. It was found that the excessive Young's modulus of the MFC composite was originated from an increase of that of the SPP matrix induced by the α‐nucleation effect. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
The effect of type and content of wood fibers on the thermal, mechanical and rheological behavior of the commercial biodegradable polyester product, Ecovio® (BASF) is analytically studied. Ecovio® is basically a blend of poly(butylene adipate‐terephthalate) copolyester (Ecoflex®, BASF) and polylactide. Three different types of wood fibers, based either on raw cellulose (Arbocel) or selected conifers (Lignocel), with varying fiber size at various weight fractions were used for this purpose. The role of these fibers on the thermomechanical performance of Ecovio® was investigated in terms of several experimental techniques including scanning electron microscopy, differential scanning calorimetry, dynamic mechanical analysis, creep, tensile testing, and water uptake at room temperature. At the low wood fiber content (20 wt %), Lignocel composite's properties are predominant compared with the Arbocel composites. It has been found, that at this wood content, an efficient compatibility between matrix and fibers is achieved, leading to superior reinforcement. This trend is completely reversed at higher filler loading, probably due to the poor interfacial adhesion between the matrix and Lignocel occurring at 30 wt %. This behavior was supported by all the experimental methods employed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42185.  相似文献   

15.
Bacterial cellulose (BC), microcrystalline cellulose (MCC), and bamboo cellulosic fibers (BCFs) were used to reinforce poly(l ‐lactic acid) (PLLA) based bio‐composites. The mechanical properties and crystallization of the composites were studied through mechanical testing, differential scanning calorimetry, X‐ray diffraction, scanning electron microscopy, and polarizing microscope. The incorporation of all three kinds of cellulose increased the stiffness of the composites compared to pure PLLA. The reinforcing effect of the MCC in the composites is most significant. The Young's modulus and impact toughness of the MCC/PLLA composites were increased by 44.4% and 58.8%, respectively. The tensile strength of the MCC/PLLA composites was increased to 71 MPa from 61 MPa of PLLA. However, the tensile strength of the composites reinforced with BCF or BC was lower than PLLA. The three kinds of cellulosic fibers improved the crystallization of PLLA. The BC with smallest size provided the composites with smallest grain and highest crystallinity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41077.  相似文献   

16.
The main objective of this study is to obtain ethylene‐vinyl acetate copolymer (EVA)/wood‐flour foams with low density (< 0.2 g/cm3) using chemical blowing agent. Stearic acid was used as a compatibilizer to improve not only the compatibility between wood‐flour and EVA but also the compatibility between moisture and EVA in this study. The effects of wood‐flour content on the density and mechanical properties of EVA/wood‐flour foams were studied. Also, the effects of content of stearic acid on the cell morphology of EVA/wood‐flour foams were investigated. The shape of EVA/wood‐flour foams with 20% wood‐flour content becomes more uniform with increasing content of stearic acid. The most stabilized shape of the foams is obtained with 5 wt % stearic acid content. The density of EVA/wood‐flour foams with 20% wood‐flour and 5 wt % stearic acid is 0.11 g/cm3. With increasing content of stearic acid, more gas remains in the EVA matrix and consequently, average cell size and density increase. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40894.  相似文献   

17.
In this study, the effectiveness of free‐radical grafting as a compatibilization method applied to composites containing Kraft lignin (KL) and esterified lignin was comparatively investigated. Maleated lignin (ML) was first obtained via esterification of KL with maleic anhydride. KL and ML were respectively incorporated into high density polyethylene (HDPE) up to 60% wt and dicumyl peroxide was used as a free‐radical generator. The influence of lignin esterification and free‐radical grafting on the morphological, mechanical, and thermal properties of lignin‐based composites was studied. The incorporation of lignins into HDPE resulted in poor mechanical strength because of low compatibility. Morphological and mechanical evidences indicate improved compatibility between lignins and HDPE following free‐radical grafting. The free‐radical scavenging properties of KL allowed better compatibilization of KL‐based composites compared with ML‐based composites. In addition, thermal analysis results showed that free‐radical grafting increases the thermal stability of ML‐based composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41484.  相似文献   

18.
The objectives of this study were to prepare injection‐moulded wood‐based plastics and to characterize their mechanical properties. Injection‐moulded wood‐based plastics with satisfactory flexural (65.7 MPa) and tensile strengths (30.1 MPa) were successfully obtained through a simple reaction of mulberry branch meal with phthalic anhydride (PA) in 1‐methylimidazole under mild condition. The X‐ ray diffraction results indicated complete disruption of the crystallinity of cellulose because the pattern obtained for esterified fiber was almost a straight line without any peaks. The peaks in the Fourier transform infrared spectroscopy spectra (1738 and 748 cm?1) and NMR spectra (173.3 and 133.5 ppm) indicated the attachment of 0‐carboxybenzoyl groups onto the wood fibers via ester bonds. The differential scanning calorimetry curves showed that the glass transition temperature decreased with increasing weight percentage gain (WPG). The derivative thermogravimetric analysis curves indicated that esterified wood fiber was less thermally stable than the untreated fiber and that the component tends to be homogeneous with increasing WPG. Scanning electron microscope revealed that the fractured surfaces of most samples were smooth and uniform but that high temperature and less PA dosage could lead to the appearance of holes and cracks. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41376.  相似文献   

19.
This work aims to investigate the dielectric potential of microcrystalline cellulose, a green biosourced material, as a third constituent in the three‐phase composites based on ethylene vinyl acetate‐vinyl ester of versatic acid (EVA‐VeoVa) terpolymer and BaTiO3. For that, new green three‐phase composites were prepared using an economic and green process, with simple implementation at room temperature and using water as a solvent. Compared with the binary composite EVA‐VeoVa/BaTiO3, the three‐phase composite EVA‐VeoVa/BaTiO3/microcrystalline cellulose showed an improvement of the BaTiO3 particles dispersion, enhanced relative permittivity, and reduced dielectric loss, which explains the significance of this study. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46147.  相似文献   

20.
With growing environmental awareness, ecological concerns and new legislations, natural fiber‐reinforced plastic composites have received increasing attention during the recent decades. The natural fiber composites have many advantages over traditional glass fiber composites, including lower cost, lighter weight, environmental friendliness, and recyclability. This article reports the findings of the studies done on a new fiber, hitherto unexplored, extracted from Saccharum munja grass. The extracted fibers were further treated using sodium hydroxide to improve its performance in composites. Both treated and untreated fiber‐reinforced composites were prepared by hand lay‐up process using unsaturated polyester resin. Mechanical properties and thermal behavior of the composites were evaluated. The improvement in properties was found for alkali‐treated fiber composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40829.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号