首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Electrospun poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐HFP) membrane was prepared from a solution of 16 wt % of PVdF‐HFP containing acetone/N,N‐dimethyl acetamide (7:3 wt %). The prepared electrospun PVdF‐HFP membrane (esPM) was then soaked in ionic liquid electrolyte containing 0.5M LiI, 0.05M I2 , and 0.5M 4‐tert butylpyridine, 0.5M 1‐butyl‐3‐methylimidazolium iodide (BMImI) in acetonitrile to get electrospun PVdF‐HFP membrane electrolyte (esPME). The effect of various concentrations of BMImI containing esPME on ionic conductivity was studied by AC‐impedance measurements and the diffusion co‐efficients was determined by linear sweep voltammetry. The photovoltaic performance of a DSSC fabricated using 0.5M BMImI containing electrospun PVdF‐HFP membrane electrolyte (0.5M BMImI‐esPME) has power conversion efficiency (PCE) of 6.42%. But the stability of the DSSC fabricated using 0.5M BMImI‐esPME was considerably superior to that fabricated using 0.5M BMImI containing liquid electrolyte (0.5M BMImI‐LE). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42032.  相似文献   

2.
Alkaline anion exchange membrane with semi‐interpenetrating polymer network (s‐IPN) was constituted based upon quaternized poly(butyl acrylate‐co‐vinylbenzyl chloride) (QPBV) and poly(vinylidene fluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)]. The QPBV was synthesized via the free radical copolymerization, followed by quaternization with N‐methylimidazole. The s‐IPN system was constituted by melting blend of QPBV and P(VDF‐HFP), and then crosslinking of P(VDF‐HFP). Ion exchange capacity, water uptake, mechanical performance, and thermal stability of these membranes were characterized. TEM showed that alkaline anion exchange membrane exhibited s‐IPN morphology with microphase separation. The fabricated s‐IPN membrane exhibited hydroxide ion conductivity up to 15 mS cm?1 at 25 °C and a maximum DMFC power density of 46.55 mW cm?2 at a load current density of 98 mA cm?2 at 30 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45775.  相似文献   

3.
For the modification of an electrospun poly (vinylidene fluoride‐co‐hexafluoropropylene) (PVDF–HFP) membrane for its potential use as an electrolyte or separator in lithium batteries, poly(ethylene glycol) dimethacrylate (PEGDMA) was introduced into a polymer solution for electrospinning. A post heat treatment of the as‐electrospun membrane at an elevated temperature was performed for PEGDMA polymerization, and this was verified by Fourier transform infrared spectroscopy. The results showed that no significant variations in the membrane morphology were detected when a small amount of PEGDMA (PVDF–HFP/PEGDMA mass ratio = 4/1) was incorporated. This electrospun membrane after heat treatment at 130°C for 2 h exhibited a significantly higher tensile strength (6.26 ± 0.22 MPa) than that of an electrospun PVDF–HFP membrane (3.28 ± 0.35 MPa) without PEGDMA. The porosity and liquid absorption of the electrospun PVDF–HFP/PEGDMA (4/1) membrane were 70.0 ± 1.6% and 267 ± 11%, respectively, lower than those of the electrospun PVDF–HFP membrane (76.5 ± 0.3% and 352 ± 15%) because of the introduction of PEGDMA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Dye sensitized solar cell (DSSC) has been magnetizing more awareness in current research due to more efficiency. The foremost drawback of the solar cell is the evaporation of organic electrolyte. In order to address this problem, the polyvinylidene fluoride–polyacrylonitrile–Electrospinning Fibrous Membranes were prepared by electrospinning method and the photovoltaic performances were evaluated. The polyvinylidene fluoride and polyacrylonitrile were mixed in N,N‐dimethylformamide and acetone at an applied potential of 15 kV. The surface morphology of membrane is interconnected with network structure and a large number of voids were observed from Field Emission Scanning Electron Microscopy images. The electrolyte uptakes up to 310% were observed and it shows an increase in the ionic conductivity up to 6.12 × 10?2 S cm?1 at 25°C. The fabricated DSSCs show open circuit voltage (Voc) of 0.74 V, fill factor (FF) of 0.65 and short circuit current (Jsc) of 6.20 mA cm?2 at an incident light intensity of 100 mW cm?2. The photovoltaic efficiency also reached up to 3.09%. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40022.  相似文献   

5.
Carbon black was embedded in mixtures of poly(ethylene oxide) and poly(vinylidene fluoride–hexafluoropropylene) to make a carbon/polymer composite slurry, which was deposited onto a transparent conducting glass substrate by a doctor‐blade coating for application in dye‐sensitized solar cells (DSSCs) as a counter‐electrode (CE) material. The experiments indicated that the photovoltaic parameters of the DSSCs were strongly dependent on the carbon concentration in the slurry. The device with a carbon CE whose mass ratio was 1 : 1 (mass ratio = carbon black mass to polymer mass) exhibited an overall energy conversion efficiency of 4.62%; this was comparable to that of a device with platinum as a CE (5.32%) under the same test conditions. The better electrocatalytic activity of CE‐1.0 (where 1.0 indicates the mass ratio of carbon black to polymer) for the reduction of triiodide resulted a higher performance of the DSSC with such a CE. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Proton exchange membranes (PEMs) based on blends of poly(ether sulfone) (PES) and sulfonated poly(vinylidene fluoride‐co‐hexafluoropropylene) (sPVdF‐co‐HFP) were prepared successfully. Fabricated blend membranes showed favorable PEM characteristics such as reduced methanol permeability, high selectivity, and improved mechanical integrity. Additionally, these membranes afford comparable proton conductivity, good oxidative stability, moderate ion exchange capacity, and reasonable water uptake. To appraise PEM performance, blend membranes were characterized using techniques such as Fourier transform infrared spectroscopy, AC impedance spectroscopy; atomic force microscopy, and thermogravimetry. Addition of hydrophobic PES confines the swelling of the PEM and increases the ultimate tensile strength of the membrane. Proton conductivities of the blend membranes are about 10?3 S cm?1. Methanol permeability of 1.22 × 10?7cm2 s?1 exhibited by the sPVdF‐co‐HFP/PES10 blend membrane is much lower than that of Nafion‐117. AFM studies divulged that the sPVdF‐co‐HFP/PES blend membranes have nodule like structure, which confirms the presence of hydrophilic domain. The observed results demonstrated that the sPVdF‐co‐HFP/PES blend membranes have promise for possible usage as a PEM in direct methanol fuel cells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43907.  相似文献   

7.
A kind of wire‐shaped, dye‐sensitized solar cell (WDSSC) composed of poly(vinyl alcohol) (PVA) gel electrolyte and filament‐formed electrodes of titanium and platinum was prepared, and its photovoltaic performance was analyzed with the variations in the dimensions of the electrodes and cells. The dimensions of the wire‐shaped cell were adjusted through the thickness of the TiO2 layer, the amount of PVA gel electrolyte, and length of the Pt filament. The dominant parameters determining the cell performance were mainly analyzed with the results from the various scanning electron microscopy images and fitted plots of electrochemical impedance spectroscopy. Although the conversion efficiencies of the fabricated WDSSCs were relatively lower than those of the conventional dye‐sensitized solar cells, this development should provide important guiding directions for the design of similar WDSSCs with higher efficiencies. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43439.  相似文献   

8.
The structure and performance of modified poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF‐co‐HFP) ultra‐filtration membranes prepared from casting solutions with different concentrations of poly(vinyl pyrrolidone) (PVP) were investigated in this study. Membrane properties were studied in terms of membrane compaction, pure water flux (PWF), water content (WC), membrane hydraulic resistance ( R m), protein rejection, molecular weight cut‐off (MWCO), average pore size, and porosity. PWF, WC, and thermal stability of the blend membranes increased whereas the crystalline nature and mechanical strength of the blend membranes decreased when PVP additive concentration was increased. The contact angle (CA) decreased as the PVP concentration increased in the casting solution, which indicates that the hydro‐philicity of the surface increased upon addition of PVP. The average pore size and porosity of the PVdF‐co‐HFP membrane increased to 42.82 Å and 25.12%, respectively, when 7.5 wt% PVP was blended in the casting solution. The MWCO increased from 20 to 45 kDa with an increase in PVP concentration from 0 to 7.5 wt%. The protein separation study revealed that the rejection increased as the protein molecular weight increased. The PVdF‐co‐HFP/PVP blended membrane prepared from a 7.5 wt% PVP solution had a maximum flux recovery ratio of 74.3%, which explains its better antifouling properties as compared to the neat PVdF‐co‐HFP membrane. POLYM. ENG. SCI., 55:2482–2492, 2015. © 2015 Society of Plastics Engineers  相似文献   

9.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐co‐HFP) hollow fiber membranes were prepared by using the phase inversion method. The effect of polyethylene glycol (PEG‐600Mw) with different concentrations (i.e., 0, 5, 7, 10, 12, 15, 18, and 20 wt %) as a pore former on the preparation and characterization of PVDF‐co‐HFP hollow fibers was investigated. The hollow fiber membranes were characterized using scanning electron microscopy, atomic force microscopy, and porosity measurement. It was found that there is no significant effect of the PEG concentration on the dimensions of the hollow fibers, whereas the porosity of the hollow fibers increases with increase of PEG concentration. The cross‐sectional structure changed from a sponge‐like structure of the hollow fiber prepared from pure PVDF‐co‐HFP to a finger‐like structure with small sponge‐like layer in the middle of the cross section with increase of PEG concentration. A remarkable undescribed shape of the nodules with different sizes in the outer surfaces, which are denoted as “twisted rope nodules,” was observed. The mean surface roughness of the hollow fiber membranes decreased with an increase of PEG concentration in the polymer solution. The mean pore size of the hollow fibers gradually increased from 99.12 to 368.91 nm with increase of PEG concentration in polymer solution. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Poly(vinylidene fluoride)‐polyacrylonitrile‐based membranes containing Fe2O3 nanoparticles were prepared by electrospinning technique and characterized by HR‐SEM, FTIR, and XRD analysis. The effect of electrolyte in the electrospun nanofibers on electrolyte uptake, ionic conductivity and porosity were studied. The electrospun membranes containing Fe2O3 showed an enhanced ionic conductivity than that of without Fe2O3. Among the prepared membranes, the membrane with 7 wt % Fe2O3 has the highest liquid electrolyte uptake of 562% and ionic conductivity of 6.81 × 10?2 S cm?1. The photovoltaic performance for open circuit voltage (Voc), Short‐circuit current density (Jsc), Fill factor (FF), and η of the DSSC fabricated with 7 wt % Fe2O3 are 0.77 V, 10.4 mA/cm2, 0.62 and 4.9%, respectively. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41107.  相似文献   

11.
Trifluoroethylene addition and thermal treatment induced crystal phase transition in a series of poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] containing varied TrFE molar ratio (6, 9, 12, and 20 mol %) prepared from the hydrogenation of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene have been investigated by means of Fourier transform infrared spectral (FTIR), X‐ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The comprehensive applications of the three techniques could distinguish α, β and γ phase of P(VDF‐co‐TrFE) very well. The multipeak fitting technique of DSC is successfully applied to calculate the percentage of different phases in the samples, which allows us to investigate the phase transition process of P(VDF‐co‐TrFE) precisely. It is found that the crystal phase of P(VDF‐co‐TrFE) films is turned from α + γ phase (6 mol % TrFE) to α + γ + β phase (9 and 12 mol % TrFE) to β phase (20 mol % TrFE) at high temperature, and from α + γ phase (6 mol % TrFE) to γ + β phase (9 mol % TrFE) to β phase (>12 mol % TrFE) at low fabricated temperature. Both the fabrication conditions and TrFE addition are responsible for the crystal phase transition of the hydrogenised P(VDF‐co‐TrFE). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
In situ thermal polymerization of a model ionic liquid monomer and ionic liquids mixture to form gel electrolytes is developed for quasi‐solid‐state dye‐sensitized solar cells (Q‐DSSCs). The chemical structures and thermal property of the monomers and polymer are investigated in detail. The effect of iodine concentration on the conductivity and triiodide diffusion of the gel electrolytes is also investigated in detail. The conductivity and triiodide diffusion of the gel electrolytes increase with the increasing I2 concentration, while excessive I2 contents will decrease the electrical performances. Based on the in situ thermal polymeric gel electrolytes for Q‐DSSCs, highest power conversion efficiency of 5.01% has been obtained. The superior long‐term stability of fabricated DSSCs indicates that the cells based on in situ thermal polymeric gel electrolytes can overcome the drawbacks of the volatile liquid electrolyte. These results offer us a feasible method to explore new gel electrolytes for high‐performance Q‐DSSCs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42802.  相似文献   

13.
For an efficient energy storage system, effective material is to be used. In the present work, novel poly(vinylidene fluoride)/titanium oxide (PVdF/TiO2) composite membranes were developed using electrospinning technique, as separator for supercapacitors. Different weight percentages of TiO2 nanoparticle (0, 5, 10, 15, and 20 wt%) were mixed with 20 wt% of PVdF in a 50:50 wt% of tetrahydrofuran and dimethylacetamide solvent. Various physical and electrochemical properties including fiber diameter, thermal stability, crystallinity, porosity, and electrolytic uptake were studied to identify the best membrane with optimum TiO2 wt% exhibiting superior characteristics. SEM and TGA studies revealed that the developed PVdF/TiO2 composite membrane with 10 wt% showed improved properties with a lower average diameter of about 66 ± 8 nm, enhanced thermal stability up to 513.15°C and higher porosity of 89%, respectively compared to other membranes. The crystallinity, ionic conductivity, and specific capacitance of the nonwoven separator membranes were determined using X-ray diffraction technique, electrolytic uptake, and charge–discharge studies, respectively. The present study revealed that the addition of TiO2 nanoparticles improved the physical and thermochemical properties of the separator membrane substantially and PVdF/TiO2 composite membrane with 10 wt% displayed superior performance compared to other membranes.  相似文献   

14.
Highly porous poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF–HFP)‐based polymer membranes filled with fumed silica (SiO2) were prepared by a phase‐inversion technique, and films were also cast by a conventional casting method for comparison. N‐Methyl‐2‐pyrrolidone as a solvent was used to dissolve the polymer and to make the slurry with SiO2. Phase inversion occurred just after the impregnation of the applied slurry on a glass plate into flowing water as a nonsolvent, and then a highly porous structure developed by mutual diffusion between the solvent and nonsolvent components. The PVdF–HFP/SiO2 cast films and phase‐inversion membranes were then characterized by an examination of the morphology, thermal and crystalline properties, absorption ability of an electrolyte solution, ionic conductivity, electrochemical stability, and interfacial resistance with a lithium electrode. LiPF6 (1M) dissolved in a liquid mixture of ethylene carbonate and dimethyl carbonate (1:1 w/w) was used as the electrolyte solution. Through these characterizations, the phase‐inversion polymer electrolytes were proved to be superior to the cast‐film electrolytes for application to rechargeable lithium batteries. In particular, phase‐inversion PVdF–HFP/SiO2 (30–40 wt %) electrolytes could be recommended to have optimum properties for the application. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 140–148, 2006  相似文献   

15.
Poly(o‐anisidine) (POA) counter electrodes (CEs) were fabricated by potentiodynamic deposition and incorporated into platinum (Pt)‐free dye‐sensitized solar cells (DSSCs). A different sweep number had great impact on the morphology and electrocatalytic activity of the POA films. The POA film fabricated by 25 sweep cycles was observed to have a highly porous morphology, and this resulted in a lower charge‐transfer resistance of 57 cm2 in comparison with the Pt CE. The DSSC assembled with the POA CE showed a higher photovoltaic conversion efficiency of 1.67% compared to 1.2% for the DSSC with the Pt CE under full sunlight illumination. Therefore, the high active surface area of the 25‐sweep‐segmented POA film could be considered a promising alternative CE for use in DSSCs because of its high electrocatalytic performance and electrochemical stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42041.  相似文献   

16.
Dye‐sensitized solar cell (DSSC) is an alternative photovoltaic application used to replace the liquid electrolyte dependent conventional photovoltaic cell. In this research, gel polymer electrolyte (GPE) was used to replace the unstable liquid electrolyte. This GPE consists of poly[1‐vinylpyrrolidone‐co‐vinyl acetate] (P[VP‐co‐VAc]), tetrabutylammonium iodide (TBAI), sodium iodide (NaI), iodine (I2), ethylene carbonate (EC), and propylene carbonate (PC). The GPE was tested for its ionic conductivity and an optimum level was reached at sample with 30% TBAI and 6% NaI at 1.17 × 10?3 S cm?1. The DSSC was then fabricated with all GPEs and a photovoltaic performance study was conducted. As a result, the highest photovoltaic conversion efficiency (PCE), η for a single salt was 3.04% for 40% TBAI. When a second salt is added, the system showed improvement in efficiency, η to 4.54% with short circuit current density, Jsc of 11.02 mA cm?2 and open circuit voltage, Voc of 0.67 V and FF of 61%. The other changes after the addition of TBAI and NaI salts have been observed through X‐ray diffraction, Fourier transformation and thermal analysis studies. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43805.  相似文献   

17.
In this study, an electric‐stimulus‐responsive bending actuator based on a platinum (Pt)‐coated sulfonated poly(vinyl alcohol) (SPVA)–polyaniline (PANI) composite membrane was developed. The SPVA–PANI membrane was prepared by a solution casting method; it showed good electrochemical properties and an adequate ion‐exchange capacity of 1.6 mequiv/g of dry membrane. The water uptake by the membrane with 4 h of immersion time at 45 °C was found to be 425%. The SPVA–PANI composite membrane based ionic polymer metal composite (IPMC) actuator prepared by the coating of Pt metal layers on both sides of the membrane by an electroless plating process showed a good proton conductivity of 1.75 × 10?3 S/cm. The smooth and uniform coating of Pt on both surfaces of the membrane, as indicated by scanning electron micrographs, seemed to be responsible for the slow water loss that is necessary for the long life of an IPMC actuator. The maximum water loss was 48% at 6 V for 12 min. This indicated the better performance of the IPMC membrane when an electric potential was applied. According to electromechanical characterization, the maximum tip displacement was 14.5 mm at 5.25 V. A multifinger IPMC membrane based microgripping system was developed, and it showed potential for microrobotics application. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43787.  相似文献   

18.
The free‐standing, flexible, and ferroelectric films of poly(vinylidenefluoride‐co‐hexafluoropropylene) [P(VDF‐HFP)] were prepared by spin coating method. The ferroelectric phase of the films was enhanced by adding magnesium nitrate Mg(NO3)2 in different wt % as the additive during the film fabrication. The effects on the structural, compositional, morphological, ferroelectric, dielectric, and leakage current behaviors of the films due to the addition of salt were analyzed. Based on the X‐ray diffraction (XRD) patterns and Fourier Transform Infrared (FTIR) spectra, it is confirmed that the addition of Mg(NO3)2 promotes the electroactive β phase that induces the ferroelectric property. The fiber‐like topography of the films exhibits a nodule‐like structure, and the roughness of the films increases by the addition of Mg(NO3)2. The ferroelectric studies show the higher polarization values for the composite films than that of the plain P(VDF‐HFP) film. The Piezo‐response force microscope images also confirm the domain switching behavior of the samples. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44008.  相似文献   

19.
The temperature‐dependent transition of the crystal phases of poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) was investigated in the electrospinning process. A solution of PVDF‐HFP in N,N‐dimethyl acetamide (DMAc) produced only the β‐phase‐dominant crystal up to 70 °C, irrespective of the spinneret temperature. In a mixed solvent of DMAc and acetone, however, the crystal phase of the electrospun fibers was dependent on temperature: β‐phase‐dominant at 30 and 50 °C and α‐phase‐dominant at 70 °C. The transition was related to a change of the coagulation rate during electrospinning, because the less perfect α phase is preferable to the β phase at a higher coagulation rate. The temperature‐dependent increase of the coagulation rate was more drastic in the presence of acetone, so the transition took place only in the mixed solvent. At elevated temperature, acetone not only raised the evaporation rate of the solvent but promoted the phase separation of the polymer resulting from the lower critical solution temperature behavior, which was rheologically traced. © 2019 Society of Chemical Industry  相似文献   

20.
Homopolymer of vinylidene fluoride and its copolymers containing hexafluoropropylene (HFP) were prepared from free radical solution polymerizations and spin‐coated on the glass slides to fabricate thin film with a thickness of ~ 1 μm. It was found that the surface morphology of fluorinated thin films was strongly dependent on the crystallinity of polymers. In addition, the surface morphology was the most important factor to determine the optical transmittance of glass coated with the fluoropolymer thin film. As decreasing the crystallinity of the polymer by introducing HFP with a bulky CF3 moiety, the surface of thin film became flattened and the transmittance of visible light was increased by reducing scattering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号