首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of organic fillers into thermoplastic polymers is an interesting issue, which has had growing consideration and experimentation during the last years. It can give rise to several advantages. First, the cost of these fillers is usually very low. Also, the organic fillers are biodegradable (thus contributing to an improved environmental impact), and finally, some mechanical and thermomechanical properties can be enhanced. In this study, the effect of the addition of different organic fillers on the mechanical properties and processability of an extrusion‐grade polypropylene were investigated. The organic fillers came from natural sources (wood, kenaf, and sago) and were compared to short glass fibers, a widely used inorganic filler. The organic fillers caused enhancements in the rigidity and thermomechanical resistance of the matrix in a way that was rather similar to the one observed for the inorganic filler. A reduction in impact strength was observed for both types of fillers. The use of an adhesion promoter could improve their behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1906–1913, 2005  相似文献   

2.
In this article, we report on the pyrolysis of polypropylene (PP) and high‐density polyethylene (HDPE) in the absence and presence of plain and metal‐oxide‐impregnated bentonite clays [BCs; acid‐washed bentonite clay (AWBC), Zn/AWBC, Ni/AWBC, Co/AWBC, Fe/AWBC, and Mn/AWBC] into useful products. Thermal and catalytic runs were performed at 300°C in the case of PP and at 350°C in the case of HDPE for a contact time of 30 min. The effects of different catalysts and their concentrations on the overall yields and the yields of liquid, gas, and residue were studied. The efficacy of each catalyst is reported on the basis of the highest liquid yields (in weight percentage). The derived liquid products were analyzed by Fourier transform infrared spectroscopy and gas chromatography–mass spectroscopy; this confirmed the presence of paraffins, olefins, and naphthenes. The results indicate the catalytic role of impregnated BCs compared to plain BC with the optimum efficiency shown by Co/AWBC in the case of PP and Zn/AWBC in the case of HDPE toward the formation of liquid products in a desirable C range with the enrichment of olefins and naphthenes in the case of PP and paraffins and olefins in the case of HDPE compared to the thermal run. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41221.  相似文献   

3.
The synergistic mechanism of tetrabutyl titanate (TBT) in the intumescent flame‐retardant polypropylene (PP) composites was investigated in this work. The intumescent flame‐retardant was composed of pentaerythritol (PER) as a carbonizing agent ammonium polyphosphate (APP) as a dehydrating agent and blowing agent. Five different concentrations (1, 1.25, 1.5, 1.75, 2 wt %) of TBT were incorporated into flame retardant formulation to investigate the synergistic mechanism. The thermal degradation and flammability of composites were characterized by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and UL‐94 tests. The morphology and chemical structure of char layer was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive spectrometer (EDS). The results showed that LOI was increased from 27.8 to 32.5%, with the increase of TBT content from 0 to 1.5 wt %. Results from SEM, and FTIR demonstrated that TBT could react with APP and PER to form the stable char layer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4255–4263, 2013  相似文献   

4.
The influence of the addition of high‐impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene–butadiene–styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
The oxodegradation of an injection molding grade polypropylene (PP), formulated with 0%, 1.5%, and 3% w/w of a pro‐oxidant additive, was studied. The degradation was conducted in a weathering tester at 60 °C for 40 h. The process was monitored by Fourier transform infrared spectroscopy, standard differential scanning calorimetry, and successive self‐nucleation and annealing. Neat PP samples did not exhibit significant changes during the exposure time employed. PP samples with oxo‐additive presented similar changes independently of the amount of oxo‐degradative additive employed; however, the changes manifested more rapidly in the formulation with higher pro‐oxidant content. Fourier transform infrared spectroscopy studies revealed the presence of hydroxyl and carbonyl functional groups whereas differential scanning calorimetry tests showed the decrease in the melting and crystallization temperatures as a consequence of the chain scission and oxidation reactions taking place during exposure. In addition, the induction time (tid) of the oxo‐degradative process was determined for each technique employed and successive self‐nucleation and annealing was found to be the most sensitive characterization technique to reveal structural modifications in PP samples. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46088.  相似文献   

6.
Phosphorous antioxidants efficiency against molten polypropylene (PP) thermal oxidation was assessed during isothermal ageing and processing by rotational molding. During isothermal ageing, experimental data were compared to the ones calculated on the basis of a kinetic model. Phosphonite is more effective than phosphite. Both phosphite and phosphonite decompose hydroperoxide and prevent initiation of oxidation reactions. However, phosphonite hydrolysis product acts as a radical chain terminator and blocks propagation reactions. Kinetic constants of stabilization reactions were evaluated and discussed. Further, this kinetic modeling was coupled to a thermal software, able to predict polymer temperature evolution during rotational molding and the degradation critical temperature (DCT) of different stabilized PP. A DCT of 235°C was obtained for PP stabilized with phosphonite and hindered phenol against 215°C for PP stabilized with phosphite and the same phenol. This difference of 20°C, corresponding to 5 min more heating is significant to optimize rotational molding. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41285.  相似文献   

7.
Numerous strategies to improve the fiber–matrix interaction in natural fiber composites (NFCs) and wood polymer composites (WPCs) have been proposed and investigated. We have reviewed literature on polyolefin‐based NFCs and WPCs to get an overview of the current state of the art of compatibilization methods. Those are classified in two categories here, namely fiber‐based strategies and matrix‐based strategies. Although this issue has been covered by several reviews before, as yet no work exists that is focused on polyolefin‐based NFCs and WPCs. Furthermore, a ranking of the compatibilization methods based on their effects on material properties such as tensile/flexural strength and modulus, impact strength and water absorption, allows for an assessment of the efficiency of the various methods. As to the fiber‐based strategies, silanes, maleated polyolefins (MA‐POs), mercerization and acetylation are most thoroughly investigated. Silanes are most effective judged by achievable material property improvements, allowing for increases in tensile and flexural strength of more than 100%. Among the matrix‐based strategies, MA‐POs and isocyanates are most prominent in the literature. The first class enables the more significant material improvements, with reported increases of tensile and flexural strength of 132% and 85%, respectively. While strengths can be enhanced by many compatibilization methods, moduli, and impact strength (notched in particular) are in most cases improved to a lesser degree or even reduced. Especially, the last point calls for further attention, because impact strength is still a weak point of NFCs and WPCs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

8.
Water uptake characteristics and some mechanical properties of polypropylene composites containing three types of natural fillers, purified α‐cellulose, wastepaper fibers, and wood flour were studied. The fiber contents were 15, 25, and 35% by weight. Two percent maleic anhydride polypropylene (MAPP) was also added to the mix, as the compatibilizer agent. Mixing process was performed in a Brabender Plasticorder until a constant torque was reached. Composites made out of these combinations were then pressed in a laboratory press and ASTM standard test specimens were cut out of the sheets. Water absorption and tensile tests were performed on these specimens. The results showed a significant difference between the various filler types regarding water uptake. Water uptake also increased by the increase in filler content. Tensile strength and elongation at break in composites declined when compared with pure polypropylene, but their modulus of elasticity increased. Among the three types of fillers, no significant discrepancies were observed in terms of improving mechanical properties in composites. Filler content increase had no drastic effect regarding strength improvement. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 941–946, 2003  相似文献   

9.
Polypropylene is a leading commercial, fiber‐forming polymer due to its low cost and potential for making high strength fibers. As the polymer of choice in the biomedical field, polypropylene contains only two elements, namely carbon and hydrogen. As a result, it is very hydrophobic and bio‐inert lacking biodegradability in the landfill. Meltblown and spunbond polypropylene nonwovens were exposed to γ‐radiation doses up to 25 kGy. The changes in morphology, chemical, thermal, and tensile properties were characterized by various analytical techniques. Following γ‐radiation, the FTIR spectrum illustrated an increase in carbonyl groups suggesting radio‐oxidation. Additionally, there was a decrease in thermal and tensile properties indicating deterioration of the polymer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39917.  相似文献   

10.
In this article, the hot air aging of high strength glass fiber fabric/epoxy novolac resin (SW/EPN) composites was investigated by the aid of the aging behavior of EPN, mainly focusing on the microstructure evolvement of SW/EPN composites. The aging mechanism and thermal mechanical properties of SW/EPN composites were analyzed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, thermo‐gravimetric analyzer coupled with Fourier transform infrared spectrometry, and dynamic mechanical thermal analysis. The results showed that micro cracks initiated and propagated at the fiber–matrix interphase because of the heat and oxygen effect. After long‐time aging at elevated temperatures, delamination phenomenon was discovered in SW/EPN composites. The results of weight changes showed that the degradation of EPN played a major role in SW/EPN composites. Moreover, the degradation of EPN contained post‐curing, oxidation, and decomposition. The results also revealed that unaged EPN indicated two glass transition temperatures (Tg1 and Tg2). Tg1 increased for post curing while Tg2 decreased for oxidation with increasing of aging time and temperature. In the final period of aging at higher temperatures, only one Tg was observed because the formation of perfect crosslinked networks made EPN homogeneous. In addition, the relationship between Tg and chemical structure, as well as Tg and mass loss, confirmed that the variation of Tg depended on chemical changes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40128.  相似文献   

11.
This article deals with the global aging behavior of three polypropylene random copolymer (PP-R) materials with varying primary structure and morphology. Hot air aging experiments at elevated temperatures from 95 to 135 °C were carried out using micro-sized specimens with a thickness of 100 μm. Technological and analytical aging indicators were monitored for an exposure time of up to 750 days. Independent of comonomer type (ethylene vs. butylene) and morphology (α vs. β crystal form) a critical molar mass of 300 kg mol−1 was obtained. The consumption of antioxidants was slower for the β-nucleated PP-R grade with finer spherulitic structure. The β-grade outperformed the α-crystal PP-R grades resulting in about 20% higher time-to-embrittlement values. © 2018 The Authors. Journal of Applied Polymer Science published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47350.  相似文献   

12.
Starch‐based biodegradable polymers are obtained by incorporating plant‐derived polymers into plastics. This blending allows for a reduction in the polymer's resistance to microbial degradation. Assessing biodegradability is a key step in the characterization of newly designed polymers. Composting has been taken into consideration in waste management strategies as an alternative technology for plastic disposal. This study analyzed the biodegradability of an injection‐molded plastic material in which thermoplastic unripe banana flour (TPF) acts as a matrix (70%) and metallocene catalyzed polyethylene acts as a reinforcing filler (30%). This plastic was termed 70 TPF, and the structural, physical, and mechanical changes associated with its degradation were analyzed. The characterization of the microorganism that contributes to 70 TPF biodegradation was also performed. After composting, 70 TPF decreased in tensile strength and the TPF moiety in the blend was lost, greatly affecting the microstructure of the sample. Based on these indicators of degradation, this study identified the fungus Mortierella elongata as the microorganism responsible for the degradation of the plastic, a finding that supports the role of fungal communities in the biodegradation of designed materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42258.  相似文献   

13.
The electron‐beam preirradiation and reactive extrusion technologies were used to prepare maleic anhydride (MAH)/vinyltrimethoxysilane (VTMS)‐co‐grafting polypropylene (PP) as a high‐performance compatibilizer for wood‐flour/PP composites. The grafting content, chemical structure, and crystallization behavior of the compatibilizers were characterized through Fourier transform infrared spectroscopy, differential scanning calorimetry, and an extraction method. The effects of the compatibilizers on the mechanical properties, water absorption, morphological structure, and torque rheological behavior of the composites were investigated comparatively. The experimental results demonstrate that MAH/VTMS‐g‐PP markedly enhanced the mechanical properties of the composites. Compared with MAH‐g‐PP and VTMS‐g‐PP, MAH/VTMS‐g‐PP clearly showed synergistic effects on the increasing mechanical properties, water absorption, and compatibility of the composites. Scanning electron microscopy further confirmed that the adhesion and dispersion of wood flours in the composites were effectively improved by MAH/VTMS‐g‐PP. These results were also proven by the best water resistance of the wood‐flour/PP composites with MAH/VTMS‐g‐PP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
The effects of fiber structure on the process of photodegradation are controversial in the field. We tested polypropylene fibers of various form for their effects on photodegradation. Fiber grade polypropylene granules were spun into partially oriented multifilament yarns at a spinning speed of 2000 m min?1. The yarns were drawn using a draw‐twist unit. Yarns were exposed to ultra‐violet radiations in a covered open air chamber for different periods of time under two different sources of emissions (UVA; λ > 300 nm and UVC; λ = 254 nm). The samples were examined by Fourier transform infrared spectroscopy, mechanical testing, differential scanning calorimetry, microscopy, and density measurements. In photodegradation process, the drawn filaments had a longer induction time than undrawn ones. The mechanical properties of the undrawn yarns deteriorate faster than the drawn yarns. During the early periods of degradation helical content increases considerably, while the density fluctuates and increases. The degradation rate under UVC radiation was faster than under UVA radiation because of the higher energy of the UVC radiation. The upper photostability of the drawn yarns compared to the undrawn ones was due to the higher crystalline fraction and greater molecular orientation in the drawn yarn. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45716.  相似文献   

15.
The effect of the filler volume fraction on the tensile behavior of injection‐molded rice husk‐filled polypropylene (RH–PP) composites was studied. Hygrothermal aging behavior was also investigated by immersing the specimens in distilled water at 30 and 90°C. The kinetics of moisture absorption was studied from the amount of water uptake by specimens at regular interval times. It was found that the diffusion coefficient and the maximum moisture content are dependent on the filler volume fraction and the immersion temperatures. Incorporation of RH into the PP matrix has led to a significant improvement in the tensile modulus and a moderate improvement in the tensile strength. Elongation at break and energy at break, on the other hand, decreased drastically with the incorporation of the RH filler. The extent of deterioration incurred by hygrothermal aging was dependent on the immersion temperature. Both the tensile strength and tensile modulus deteriorated as a result of the combined effect of thermal aging and moisture attack. Furthermore, the tensile properties were not recovered upon redrying of the specimens. Scanning electron microscopy was used to investigate the mode of failure of the RH–PP composites. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 742–753, 2001  相似文献   

16.
Effects of the addition of poly(ethylene oxide) (PEO) on the tensile properties of a polypropylene (PP)/fibrous cellulose (FC) composite were studied. PEO was incompatible with the PP matrix, and a PP/PEO blend showed a sea‐island morphology. However, the existence of the PEO phase hardly impaired the ductility of PP, leading to a strain constraint relaxation resulting from void formation in the phase. The tensile behavior of PP/PEO was little affected by the content (until 10 wt %) or molecular weight of PEO. The results suggested that the PEO phase was able to be deformed in a slit‐like shape and had no interaction with the PP matrix. Effects of PEO on the morphology and tensile and fracture behavior of the PP/FC composite with maleated polypropylene (MAPP) as a compatibilizer critically depended on the preparation method. In the case of the addition of PEO to PP/FC/MAPP, increases in the strain and fracture energy were observed in comparison with PP/FC. In the case of the addition of FC/PEO to PP/MAPP, although the obtained composite showed a lower Young's modulus and tensile strength in comparison with PP/FC, the strain and fracture energy were considerably increased by the existence of the PEO layer coating the FC. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The natural photooxidation of high‐density polyethylene (HDPE)/sericite composites was carried out outdoors for 180 days. The oxidative products, oxidation profile, and section morphology were characterized with Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy, respectively. The results showed that HDPE/sericite had a higher oxidation degree than HDPE. All the coupling agents (CAs) accelerated the oxidation reaction of HDPE and made the final carbonyl index higher than that of an untreated one. The effect of sericite might have been due to the increased ultraviolet absorbance, whereas the effects of CAs might have been due to the active functional groups. Furthermore, cracks in the sections of test bars of HDPE/sericite composites after natural exposure were also observed. Their average lengths and densities were different for various CA treatments. This difference had a direct correspondence with the oxidation profile along the depth. This demonstrated that significant oxidation and consequently chain scission in the surface layer were responsible for the formation of cracks. Comparing the natural aging behavior of the films with test bars, we obtained more information about the propagation of the photooxidation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
In this study, lauryl methacrylate grafted onto bamboo fibers (BF‐g‐LM) was prepared to improve the interfacial compatibility between hydrophilic bamboo fibers (BFs) and hydrophobic plastic. The lauryl methacrylate (LM) was initiated by benzoxyl peroxide (BPO) and grafted onto BFs via a free‐radical chain‐transfer reaction. LM was grafted onto BFs with ether bonds, and differential scanning calorimetry indicated that the ether pyrolysis of BF‐g‐LM occurred at 280°C. The optimum preparation conditions were obtained as follows: 0.30 g of pretreated bamboo flour was immersed in 0.225 mol/L LM. The reaction was then initiated by 0.025 mol/L BPO, and this reaction was sustained for 4 h at 80°C. BF‐g‐LM served as coupling agent between the BFs and the polypropylene (PP) matrix, as shown by scanning electron microscopy analysis. The elongation at break of the BF/PP composites with BF‐g‐LM increased to two times compared to that of the BF/PP composites without BF‐g‐LM. The impact strength and maximum deflection also increased to 75 and 580%, respectively. In conclusion, BF‐g‐LM is a promising coupling agent that can be used in BF‐reinforced thermoplastic composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2377–2382, 2013  相似文献   

19.
The thermooxidative aging of ammonia‐catalyzed phenolic resin for 30 days at 60–170°C was investigated in this article. The aging mechanism and thermal properties of the phenolic resin during thermooxidative aging were described by thermogravimetry (TG)–Fourier transform infrared (FTIR) spectroscopy, attenuated total reflectance (ATR)–FTIR spectroscopy, and dynamic mechanical thermal analysis. The results show that the C? N bond decomposed into ammonia and the dehydration condensation between the residual hydroxyl groups occurred during the thermooxidative aging. Because of the presence of oxygen, the methylene bridges were oxidized into carbonyl groups. After aging for 30 days, the mass loss ratio reached 4.50%. The results of weight change at high temperatures coincided with the results of TG–FTIR spectroscopy and ATR–FTIR spectroscopy. The glass‐transition temperature (Tg) increased from 240 to 312°C after thermooxidative aging for 30 days, which revealed the postcuring of phenolic resins. In addition, an empirical equation between the weight change ratio and Tg was obtained. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
A hyperbranched derivative of triazine group (EA) was synthesized by elimination reaction between ethylenediamine and cyanuric chloride. The different‐mass‐ratio EA and ammonium polyphosphate (APP) were mixed and blended with polypropylene (PP) in a constant amount (25%) to prepare a series of EA/APP/PP composites. The component ratio effect of EA/APP on the flame‐retardant property of the EA/APP/PP composites was investigated using the limiting oxygen index (LOI), vertical burning (UL‐94), and cone calorimetry tests. Results indicated that the EA/APP/PP (7.50/17.50/75.00) composite with the appropriate EA/APP mass ratio had the highest LOI, UL94 V‐0 rating, lowest heat release rate, and highest residue yield. These results implied that the appropriate EA/APP mass ratio formed a better intumescent flame‐retardant system and adequately exerted their synergistic effects. Furthermore, average effective combustion heat values revealed that EA/APP flame retardant possessed the gaseous‐phase flame‐retardant effect on PP. Residues of the EA/APP/PP composites were also investigated by scanning electron microscopy, Fourier‐transform infrared, and X‐ray photoelectron spectroscopy. Results demonstrated that the appropriate EA/APP mass ratio can fully interact and lock more chemical constituents containing carbon and nitrogen in the residue, thereby resulting in the formation of a dense, compact, and intumescent char layer. This char layer exerted a condensed‐phase flame‐retardant effect on EA/APP/PP composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号