首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to analyze the durability of a plasma treatment on the surface of poly(lactic acid) (PLA). We used atmospheric‐plasma treatment with air to improve the wettability of PLA by evaluating the aging effect under controlled conditions of relative humidity (RH) and temperature (25% RH and 25°C). We studied the durability of the atmospheric‐plasma treatment by measuring the contact angle, calculating the surface energy, and observing changes in the resistance of the PLA–PLA adhesive bonds. These techniques allowed us to evaluate the hydrophobic recovery phenomenon that the PLA surface suffered as a consequence of the aging process. The results provide the maximum storage time of PLA treated with atmospheric plasma at which the sample retained its good adhesion properties; this time was lower than 3 days under normal atmospheric conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43040.  相似文献   

2.
One commercial type of fumed silica modified with methoxy polyethylene glycol (mPEG) plasticizer was incorporated into polylactic acid (PLA) biobased polymer to improve its performance. The modification on silica was confirmed through Fourier transform infrared spectra, nuclear magnetic resonance, and TGA assessments. The grafting percentage of mPEG onto silica was about 19.8 wt %. Transmission electron microscope revealed a similar degree of dispersion for control silica and modified silica‐filled PLA nanocomposites. Not much difference in the glass transition temperatures at various silica contents was found for PLA/control silica systems from the differential scanning calorimetry measurement, but the glass transition temperature of PLA/modified silica nanocomposite at 10 phr of modified silica showed up to 11°C decrement. It was suggested that the mPEG plasticizer efficiently plasticized the PLA matrix through the enhanced segmental mobility of PLA chains. Young's modulus of PLA was about 2133 ± 53 MPa, and the value for the nanocomposite increased to 2547 ± 54 MPa at 10 of phr control silica mainly due to the reinforcing effect from nanoparticles. For modified silica, Young's modulus decreased at various silica contents. The elongation at break for modified silica‐filled cases was higher than that of control silica‐filled cases. These results were attributed to the plasticizing effect of surface modifier. Optical transmittance for pristine PLA was generally in a similar order as PLA/control silica and modified silica cases at various silica contents. The results agreed with the morphology observation as well. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The bamboo fiber (BF)-reinforced polylactic acid (PLA) composites were prepared using the twin-screw extruder and injection molding. Thermal gravimetric analyzer results indicated the thermal stability of BF/PLA composites decreased with increasing BF content. Differential scanning calorimeter and X-ray diffraction curves showed that BF played a role as a nucleating agent, but the crystallinity of composite materials decreased with the increasing BF content. The melt flow rate of composites reduced with the increase in BF content, resulting in a poorer processing property. The processability of the composites was improved with the addition of high molecular polyethylene glycol (PEG). Mechanics performance test showed that tensile strength and bending strength of composites increased at low loading with the BF content increased then decreased when the loading continued to increase. The tensile strength of the composite materials reached 65.46 MPa when alkali-treated BF (ABF) content was 20 wt %. The flexural strength of the composites reached 97.94 MPa when ABF content was 10 wt %. Impact performance has also been improved. PEG-20000 was the best plasticizer among the PEG-6000,PEG-10000, and PEG-20000. When the component of PEG was 10 wt %, the elongation increased by 56%. The scanning electron microscopy (SEM) result showed that the fracture of the composites was smooth, most ABF were wrapped in matrix and distribution of ABF in PLA matrix was more uniform. It means that interfacial compatibility of bamboo fiber and PLA improved after BF modified by alkali. High molecular weight PEG enhance melt flow ability of polymer, result in fibers were further enclosed in the PLA matrix and increase properties of composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47709.  相似文献   

4.
Polysulfide adhesives are often subjected to breakage or even fracture caused by highly loaded vibrations and large deformations from the wing, limiting their practical use in aircraft fuel tanks. Inserting polyurethanes into liquid polysulfide systems is a viable approach to strengthening their mechanical properties and avoiding nonuniform dispersion of the curing agent. In this contribution, a series of sulfur-containing curing agents were prepared by liquid polysulfide and trimethylolpropane tris(3-mercapto propionate) (TMPMP) to minimize the effect of the polysulfide-urea (-NHCOS-) groups on water resistance. Subsequently, the two-component polysulfide adhesives were successfully synthesized via the prepolymerization method, and their chemical structure, mechanical properties, and solvent resistance were systematically evaluated. As expected, the large introduction of sulfur linkages and -NHCOS- groups provided excellent oil resistance and strong mechanical properties for polysulfide adhesives. Notably, Samples 2-4 exhibited the highest tensile strength of 1.11 ± 0.02 MPa, the greatest shear strength of 1.87 ± 0.04 MPa, and the best hardness of 81 ± 2 Shore A, with 122.0%, 523.3%, and 170.0% improvement over the control, respectively. Furthermore, the oil absorption rate of all samples was less than 3.0%, and their tensile strength remained almost unchanged after 30 days of immersion than before. We believe our paradigm can provide a valuable guideline for designing high-performance polysulfide adhesives.  相似文献   

5.
Chain extension of poly(L ‐lactic acid) (PLLA) with unsaturated groups (PLBM) was attempted using benzoyl peroxide (BPO) and the resulting variation in molecular weight and mechanical properties was explored. Bulk copolymerization of L ‐lactic acid (LA)/1,4‐butanediol (BD)/maleic acid (MA) (100/1/1) isomerized some of the cis‐structured maleate units into trans‐structured fumarate units. The optically active LA promoted isomerization during the condensation polymerization. Chain extension of PLBM with BPO did not bring about a discernible increase in the molecular weight when the chain extension was carried out in various solvents with different radical abstraction abilities. In contrast, the hot pressing of PLBM containing BPO increased the molecular weight and sometimes produced chloroform‐insoluble gels depending on the BPO concentration and temperature. The chain extension at low temperatures increased the flexibility of PLBM considerably. However, PLBM lost the flexibility precipitously as the chain‐extension temperature increased above 120°C. The biodegradation rate of PLBM was much slower than that of PLLA. The biodegradation rate was further lowered by the chain extension. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1802–1807, 2003  相似文献   

6.
A “green” vinyl ester resin (GVER) is investigated for use in structural applications. The GVER was formulated using a monodisperse vinyl ester created via a novel synthetic route capable of using bio‐waste material from paper and biodiesel industries. The GVER was used either as a neat resin or as blended with a commercial vinyl ester resin. The processing viscosity and gel times are investigated. The GVER reaches a similar viscosity as the commercial resin with only half the styrene monomer content, thereby reducing the volatile organic compounds associated with manufacturing. Composites of the GVER matrix reinforced by carbon fabric were tested for their tensile and flexural properties. The mechanical performance of the GVER compares favorably with commercial resin and provide a route for composites manufacturing from sustainably sourced vinyl ester matrix. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44642.  相似文献   

7.
In this work, several samples based on poly(lactic) acid (PLA)/butadiene rubber (BR) blend with and without nanoclay (Cloisite 30B) were prepared using an internal mixer. Various methods were used to characterize the samples, including scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD), rheometric mechanical spectrometer, stress–strain, and impact strength tests. The SEM results showed the droplet-matrix morphology for all prepared samples. With the incorporation of nanoclay, the mean diameter of the BR droplets generated within the PLA matrix decreased. AFM test revealed the placement of nanoparticles in the PLA phase, which was consistent with the thermodynamic prediction of their location. The XRD test showed that the interlayer space of nanoclay expanded by 86% due to the diffusion of polymer chains between them. In the rheology test, this resulted in an increment in modulus and viscosity at low frequencies for the nanocomposites compared to the simple blend. The highest elongation at break was observed for the PLA/BR blend containing 10 wt% BR with approximately 40 times its value for the neat PLA, while the impact resistance increased up to three times.  相似文献   

8.
Incompatibility of poly(lactic acid)/poly(?‐caprolactone) (PLA/PCL) (80:20) and (70:30) blends were modified by incorporation of a small amount of polyoxymethylene (POM) (≤3 phr). Impact of POM on microstructures and tensile property of the blends were investigated. It is found that the introduction of POM into the PLA/PCL blends significantly improves their tensile property. With increasing POM loading from zero to 3 phr, elongation at break increases from 93.2% for the PLA/PCL (70:30) sample to 334.8% for the PLA/PCL/POM (70:30:3) sample. A size reduction in PCL domains and reinforcement in interfacial adhesion with increasing POM loading are confirmed by SEM observations. The compatibilization effect of POM on PLA/PCL blends can be attributed to hydrogen bonding between methylene groups of POM and carbonyl groups of PLA and PCL. In addition, nonisothermal and isothermal crystallization behaviors of PLA/PCL/POM (70:30:x) samples were investigated by using differential scanning calorimetry and wide angle X‐ray diffraction measurements. The results indicate that the crystallization dynamic of PLA matrix increases with POM loadings. It can be attributed to the fact that POM crystals have a nucleating effect on PLA. While crystallization temperature is 100 °C, crystallization half‐time can reduce from 9.4 to 2.0 min with increasing POM loading from zero to 3 phr. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46536.  相似文献   

9.
A high performance and functional properties in pressure‐sensitive adhesives (PSAs) are attractive in fundamental and industrial fields. To control the performance of PSAs, nanofillers have been loaded into them. In this study, we focused on composites of acrylic PSAs and nanodiamonds (NDs). The loaded NDs reinforced the mechanical properties and increased the performance of the PSAs. NDs in a PSA formed a network structure. In this study, we revealed that the acidic–basic state was a key factor in the control of the dispersion of the NDs. When a PSA emulsions and ND aqueous dispersion was mixed under basic conditions, the composites demonstrated higher PSA properties (tack, holding, and peeling strength). We investigated the effect of the ND loading on the PSA properties from the viewpoints of the nanostructure and acid–base interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46349.  相似文献   

10.
The long‐term changes in the thermophysical and mechanical properties of a cold‐curing structural epoxy adhesive were investigated by accelerating the curing reaction by post‐curing at elevated temperatures. Experimental data concerning the glass transition temperature for periods of up to 7 years and tensile strength and stiffness measurements could be extrapolated for a period of up to 17 years. An existing model for the long‐term development of concrete properties was modified for the prediction of the long‐term mechanical properties of adhesives. The applicability of the acceleration procedure and the new model was confirmed by several verification procedures. Structural adhesives exhibit significant increases in glass transition temperature, strength and stiffness over the long term provided that joints are adequately sealed and protected from humidity and UV radiation. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A dual‐curable epoxyacrylate (EA) oligomer with one epoxide group and one vinyl group at each end was synthesized for the application as adhesive sealant in the liquid crystal display panels. However, after UV and thermal cure, the EA resin was brittle with a poor resistance to crack initiation and propagation. Liquid rubbers with different functional end groups were thus tried as toughening agents for the EA resin. Among all the rubber‐toughened EAs, the EA‐V5A5 added with vinyl‐terminated and amino‐terminated butadiene‐acrylonitrile copolymers (VTBN and ATBN) each at 5 phr had the highest fracture toughness, tensile strength, and elongation at break but a lower initial modulus. To raise the modulus, submicron‐sized silica particles (∼170 nm) with surface vinyl functional groups were further added to the EA‐V5A5 to prepare the hybrid composites. Because of interfacial chemical bonding provided by the surface vinyl functional groups, both modulus and fracture toughness were increased by adding silica particles, without any appreciable decrease in extensibility. For the hybrid composite at 20 phr silica particles, the initial modulus, fracture toughness, and fracture energy were raised by 10.3, 100, and 267%, respectively, when compared to the neat epoxyacrylate. Owing to their strong interfacial bonding, the increase of fracture toughness was mainly due to the crack deflection and bifurcation on silica particles, in addition to the rubber particle bridging and tearing as evidenced by SEM pictures on the fracture surface. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41820.  相似文献   

12.
A heat‐resistance monomer denoted as triazine heterocyclic compound (TGIC‐AA) was synthesized and applied into improving the thermal stability of solvent‐based acrylic pressure sensitive adhesives (PSAs) through copolymerization. The modified acrylic PSAs tapes possessed longer holding time at temperature up to 150°C and no large areas of residues could be seen when peeled off on the substrate while the temperature of test was cooled down to room temperature. The thermal stability could be significantly enhanced in PSAs as the content of triazine heterocyclic compounds increased due to the extensive crosslinking networks. This indicated a worthy method to prepared heat resistant acrylic PSAs. An obvious reduction in peel adhesion occurred at the content of crosslinkers range 5 wt %‐7 wt %, while beyond 7 wt % adhesion failure occurred. The influences of crosslinking density on the molecular weight, glass transition temperature and viscosity, etc. for PSAs were also studied. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43281.  相似文献   

13.
The novel inorganic SiO2–MgO–CaO whiskers (SMCWs) were incorporated into nano hydroxyapatite (HA) contained polylactic acid (PLA) system to prepare the reinforced PLA/HA/SMCWs nanocomposite. Maleic anhydride grafted PLA (PLA‐g‐MAH) was then used to modify the interface between filler and matrix. The morphology, rheological behavior, crystallization, and mechanical property of the prepared nanocomposites were systematically investigated using scanning electronic microscope, dynamic rheometer, differential scanning calorimeter, polarized light microscope, and mechanical test, respectively. The results showed that the introduced PLA‐g‐MAH obviously improves the filler dispersion and the filler–matrix interfacial compatibility. Interestingly, the incorporated whiskers obviously decrease the complex viscosity and hence could significantly improve the processability of system. However, the introduction of PLA‐g‐MAH increases the complex viscosity to a greater extent. In addition, the added whiskers were found to have complicated influences on the PLA crystallization. On one hand, the incorporated whiskers can enhance the melt crystallization capability of PLA macromolecular chains; on the other hand, the introduced whiskers also show the inhibitive effect on the nucleation of PLA polymer chains and the inhibition degree is related to the loading of whiskers. The combination of whiskers and PLA‐g‐MAH could remarkably improve the mechanical performance of PLA/HA nanocomposite. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43381.  相似文献   

14.
Heat and ultraviolet (UV)‐induced bonding and debonding (BDB) adhesives were designed and prepared through blending an epoxy resin, diglycidyl ether of bisphenol A (DGEBA) with an epoxy acrylate resin, bisphenol‐A epoxy acrylate resin (BEA). The variation of the chemical structure of DGEBA and BEA in the sequential heat‐ and UV‐curing processes was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR results indicate that DGEBA and BEA successfully took part in both the heat‐curing and UV‐curing processes. The effects of the mass ratio of BEA to DGEBA, amount of heat‐curing agent, type of diluents, and UV irradiation time on the BDB properties of BDB adhesive were systematically investigated. The results show that the bonding strength increases with the decrease of the mass ratio of BEA to DGEBA and with the increase of the amount of heat‐curing agent in a certain range. The debonding strength decreases with the increase of the mass ratio of BEA to DGEBA. The mass ratio of BEA to DGEBA was set at 10 to ensure the ratio of the bonding strength to debonding strength greater than 10 times. The debonding strength of BDB adhesives also depends on the UV irradiation time, decreasing with the increase of UV irradiation time in a certain range. Based on the FTIR results and the dependence of the bonding and deboning strengths on the reaction conditions, a possible BDB mechanism of BDB adhesive was proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46435.  相似文献   

15.
A green composite with good mechanical properties and acceptable biodegradability was developed using wood flour and soybean protein that was modified by thermal‐caustic degradation and chemical crosslinking with glyoxal and polyisocyanate (PMDI). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) in combination with the traditional evaluations were employed to investigate the structure, morphology, and properties of the crosslinked soybean protein and the crosslinking‐modified wood/soybean protein composites to understand the effects of the crosslinker species on the mechanical properties, water resistance, and microbial biodegradation of soybean protein‐wood flour composites. The results indicated that the chemical crosslinking modification could improve the mechanical properties and water resistance but decrease the biodegradability of the wood/protein composite to a certain extent. Both glyoxal and PMDI alone as crosslinkers could not perfectly modify the soybean protein because of the high reactivity of PMDI and low crosslinking reactivity of glyoxal. The incorporation of glyoxal with PMDI could result in the desired crosslinking efficiency and good interfacial adhesion by compromising the advantages and disadvantages of glyoxal or PMDI alone as crosslinkers, which balanced the performances of the wood flour/soybean protein composite. The preferable combination crosslinker was composed of 50 wt % glyoxal and 50 wt % PMDI. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41387.  相似文献   

16.
Shape‐recovery materials are expected to have numerous applications as ductile structural compounds which can recover their shape after significant deformations. We report a new type of shape‐recovery polymer consisting of polylactic acid (PLA) derived from glucose compounded with a cinnamic acid ester derived from lignin. Unlike existing shape‐memory polymers, this shape‐recovery polymer exhibits a spontaneous but gradual recovery of its original dimensions, following elongation and release of stress, over a period ranging from several hours to days, without the requirement for external stimulus. In the case of a typical rubber or elastomer, shape‐recovery takes place almost instantaneously after deformation due to the energy stored by the material. Although the slow shape‐recovery polymer reported herein appears to exhibit plastic deformation as if the energy of elongation is lost, it eventually recovers from the deformation in the same manner as an elastic material. This material may have applicability to the energy‐absorbing and shape restoration automotive parts. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41004.  相似文献   

17.
The effective mechanical properties of a polyurethane adhesive (oligoetherdiol, ‐triol, MDI) in gold joints (bond line thickness, dP = 35–550 µm) are studied in the linear deformation range by dynamic mechanical analysis in shear mode. These properties depend on dP: thin ones possess a higher dynamic glass transition temperature and show a narrower glass transition than the thick ones. The storage modulus rises with decreasing dP for the rubbery plateau. The results attest mechanical interphases in the polyurethane with increased crosslink density and reduced cooperative mobility than in bulk. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42058.  相似文献   

18.
The effect of addition of methacrylate polymer into a one‐component epoxy resin, containing Epikote 828 and diimine as a water‐initiated hardener, was examined. Although the cured epoxy resin in the presence of methyl methacrylate–butyl acrylate (MMA–BA) copolymer was very brittle, the resin containing MMA–BA–[γ‐(methacryloxy)propyl]trimethoxysilane (TMSMA) copolymer showed good mechanical and adhesive properties. The adhesive strength of the cured epoxy resin containing MMA–BA–TMSMA copolymer was much higher than that without its polymer. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1943–1949, 2005  相似文献   

19.
ABSTRACT

In recent years, findings in nanoscience and nanotechnology have deeply influenced many disciplines including the material and mechanical sciences. Polymers including nanostructures have attracted attention as their adoptions in general engineering composites have yielded efficient results. In this study, three different two-component (epoxy-hardener) adhesives were doped with graphene nanoplatelets, graphene oxide nanoplatelets, carbon nanotube, and fullerene C60 at three different rates (0.5%, 1%, and 2% by weight) and the mechanical and thermal properties of the nanocomposite adhesives were examined. The nanocomposite adhesives’ mechanical properties were analyzed via tensile tests and thermal properties were analyzed via Differential Scanning Calorimeter (DSC) thermograms and Fourier Transform Infrared Spectroscopy (FT-IR) spectra. Results showed that doping nanostructures improve the stress-strain capacity of the adhesives. Both mechanical and thermal properties of the nanocomposite adhesives seem to change depending on the amount of nanostructure. Additionally, DSC and FT-IR curves showed an agreement with these improvements in the adhesives’ mechanical properties.  相似文献   

20.
Poor flame retardancy of polyurethanes (PU) is a global issue as it limits their applications particularly in construction, automobile, and household appliances industries. The global challenge of high flammability of PU can be addressed by incorporating flame‐retardant materials. However, additive flame‐retardants are non‐compatible and depreciate the properties of PU. Hence, reactive flame‐retardants (RFR) based on aliphatic (Ali‐1 and Ali‐2) and aromatic (Ar‐1 and Ar‐2) structured bromine compounds were synthesized and used to prepare bio‐based PU using limonene dimercaptan. The aromatic bromine containing foams showed higher close cell content (average 97 and 100%) and compressive strength (230 and 325 kPa) to that of aliphatic bromine containing foams. Similar behavior was observed for a horizontal burning test where with a low concentration of bromine (5 wt %) in the foams for Ar‐1 and Ar‐2 displayed a burning time of 12.5 and 11.8 s while, Ali‐1 and Ali‐2 displayed burning time of 25.7 and 37 s, respectively. Neat foam showed a burning time of 74 s. The percentage weight loss for neat PU foam was 26.5%, while foams containing 5 wt % bromine in Ali‐1, Ali‐2, Ar‐1, and Ar‐2 foams displayed weight loss of 11.3, 14, 7.9, and 14%, respectively. Our results suggest that flame retardant PU foams could be prepared effectively by using RFR materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46027.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号