首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents the preparation of electrically conducting poly(ε‐caprolactone) (PCL)/multiwall carbon nanotube (MWCNT) composites with very low percolation threshold (pc). The method involves solution blending of PCL and MWCNT in the presence of commercial PCL beads. The PCL beads were added into high viscous PCL/MWCNT mixture during evaporation of solvent. Here, the used commercial PCL polymer beads act as an ‘excluded volume’ in the solution blended PCL/MWCNT region. Thus, the effective concentration of the MWCNT dramatically increases in the solution blended region and a strong interconnected continuous conductive network path of CNT−CNT is assumed throughout the matrix phase with the addition of PCL bead which plays a crucial role to improve the electromagnetic interference shielding effectiveness (EMI SE) and electrical conductivity at very low MWCNT loading. Thus, high EMI SE value (∼23.8 dB) was achieved at low MWCNT loading (1.8 wt %) in the presence of 70 wt % PCL bead and the high electrical conductivity of ∼2.49×10−2 S cm−1 was achieved at very low MWCNT loading (∼0.15 wt %) with 70 wt % PCL bead content in the composites. The electrical conductivity gradually increased with increasing the PCL bead concentration, as well as, MWCNT loading in the composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42161.  相似文献   

2.
This study has reported the preparation of polycarbonate (PC)/graphene nanoplate (GNP)/multiwall carbon nanotube (MWCNT) hybrid composite by simple melt mixing method of PC with GNP and MWCNT at 330°C above the processing temperature of the PC (processing temperature is 280°C) followed by compression molding. Through optimizing the ratio of (GNP/MWCNT) in the composites, high electromagnetic interference shielding effectiveness (EMI SE) value (∼21.6 dB) was achieved at low (4 wt%) loading of (GNP/MWCNT) and electrical conductivity of ≈6.84 × 10−5 S.cm−1 was achieved at 0.3 wt% (GNP/MWCNT) loading with low percolation threshold (≈0.072 wt%). The high temperature melt mixing of PC with nanofillers lowers the melt viscosity of the PC that has helped for better dispersion of the GNPs and MWCNTs in the PC matrix and plays a key factor for achieving high EMI shielding value and high electrical conductivity with low percolation threshold than ever reported in PC/MWCNT or PC/graphene composites. With this method, the formation of continuous conducting interconnected GNP‐CNT‐GNP or CNT‐GNP‐CNT network structure in the matrix polymer and strong π–π interaction between the electron rich phenyl rings and oxygen atom of PC chain, GNP, and MWCNT could be possible throughout the composites. POLYM. COMPOS., 37:2058–2069, 2016. © 2015 Society of Plastics Engineers  相似文献   

3.
This work investigates the effect of different preparation routes including mechanical mixing and in situ polymerization of aniline on the electromagnetic interference shielding effectiveness (EMI SE) over the X-band (8–12 GHz) frequency range for polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) filled in styrene–butadiene–styrene triblock copolymer matrix. The dc conductivity and dielectrical properties were also investigated. For all systems, the electrical conductivity, dielectric constant, and EMI SE increased with the increase in the concentration of PAni.DBSA. Blends prepared by the in situ polymerization exhibited higher conductivity and dielectric constant and better EMI SE characteristics than the physical blends with similar amount of PAni.DBSA. EMI SE value as high as −35 dB has been achieved with about 30% of PAni.DBSA prepared by the in situ polymerization. Regarding physical blends, those involving PAni.DBSA prepared by a redoping process displayed better EMI SE. For all systems under consideration, the conductivity and EMI SE bear an exponential relationship that can be represented by a master curve. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Poly(vinylidene fluoride-co-hexafluoropropylene)/polyaniline (PVDF-co-HFP/PAni) conductive blends were prepared by two methodologies involving the in situ polymerization in two different media and dry blending approach using ball milling. Dodecylbenzenesulfonic acid (DBSA) was used both as surfactant and as protonating agent in PAni synthesis. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis) spectroscopy, and thermogravimetric analysis were used for characterizing the blends. PAni and PVDF/PAni prepared by in situ polymerization in H2O/toluene medium exhibited superior electrical conductivity, higher thermal stability and significantly higher electromagnetic interference shielding effectiveness (EMI SE) than those prepared in H2O/dimethylformamide (DMF) medium. PVDF/PAni with high-PAni content (>40%) prepared by the dry blend approach presented higher conductivity and EMI SE than those prepared by in situ polymerization. The molding temperature exerted significant influence on the conductivity and EMI SE for the blend containing higher amount of PAni. The free-solvent dry blending approach using ball milling presented similar conductivity value but the higher EMI SE when compared with in situ polymerization, and is considered environmentally and technologically interesting.  相似文献   

5.
Fabrication of highly conductive poly(styrene)/poly(aniline) (PS/PANI) microspheres has been considerably explored. Improving the adsorption efficiency of aniline on the PS microspheres is still a challenge by facile methods. To overcome this problem, poly(styrene-co-methacylic acid) (poly(St-co-MAA)) is firstly synthesized for capturing anilinium ions, and then the in-situ polymerization of aniline is implemented to obtain highly conductive poly(St-co-MAA)/PANI microspheres. The prepared poly(St-co-MAA) microspheres bearing an average particle size of 238 nm possess a low polymer dispersity index (PDI, 0.082) and high zeta-potential, which guarantee no agglomeration and deposition of microspheres latex after 30 days at room temperature. After the in-situ polymerization of aniline, the conductive disc based on poly(St-co-MAA)/PANI microspheres presents a superior electrical conductivity of 14.6 S m−1 at an inferior PANI loading of 5.74 vol% and a relatively low electrical percolation threshold (EPT < 0.16 vol%). The results indicate that the carboxylic microspheres for preparing high polymer/PANI microspheres is effective. Meanwhile, poly(St-co-MAA)/PANI microspheres show a great potential in manufacture of conductive composites due to their excellent electrical conductivity.  相似文献   

6.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

7.
The electrical properties in polymer/carbon nanotube (CNT) nanocomposites are governed not only by the degree of dispersion but also to a greater extent on the aspect ratio of the CNTs in the final composites. Melt‐mixing of polymer and CNTs at high shear rate usually breaks the CNTS that lowers the aspect ratio of the nanotubes. Thus, homogeneous dispersion of CNTs while retaining the aspect ratio is a major challenge in melt‐mixing. Here, we demonstrate a novel method that involves melt‐blending of acrylonitrile‐butadiene‐styrene (ABS) and in situ polymerized polystyrene (PS)/multiwalled CNT (MWCNT) nanocomposites, to prepare electrically conducting ABS/MWCNT nanocomposites with very low CNT loading than reported. The rationale behind choosing PS/MWCNT as blending component was that ABS is reported to form miscible blend with the PS. Thus, (80/20 w/w) ABS/(PS/MWCNT) nanocomposites obtained by melt‐blending showed electrical conductivity value ≈1.27 × 10?6 S cm?1 at MWCNT loading close to 0.64 wt %, which is quite lower than previously reported value for ABS/MWCNT system prepared via solution blending. Scanning electron microscopy and differential scanning calorimetry analysis indicated the formation of homogenous and miscible blend of ABS and PS. The high temperature (100°C) storage modulus of ABS (1298 MPa) in the nanocomposites was increased to 1696 MPa in presence of 0.64 wt % of the MWCNT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
This article describes the synthesis and characterization of highly conductive polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites prepared by in situ polymerization of pyrrole using 5‐sulfoisophthalic acid monolithium salt [lithio sulfoisophthalic acid (LiSiPA)] as dopant and ferric chloride as oxidant. Several samples were prepared by varying the amounts of MWCNTs ranging from 1 to 5 wt %. Scanning electron microscope and transmission electron microscope images clearly show a thick coating of PPy on surface of MWCNTs. The electrical conductivity of PPy increased with increasing amount of MWCNTs and maximum conductivity observed was 52 S/cm at a loading of 5 wt % of MWCNTs. Pure PPy prepared under similar conditions had a conductivity of 25 S/cm. Electromagnetic interference (EMI) shielding effectiveness (SE) also showed a similar trend and average EMI shielding of ?108 dB (3 mm) was observed for sample having 5 wt % MWCNT in the frequency range of 8.2–12.4 GHz (X‐band). The light weight and absorption dominated total SE of ?93 to ?108 dB of these composites indicate the usefulness of these materials for microwave shielding. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45370.  相似文献   

9.
A method is reported that involves the bulk polymerization of styrene monomer in the presence of multi-wall carbon nanotubes (MWCNTs) and polystyrene (PS) beads, for the preparation of MWCNT/PS conducting composites with a significantly lower (0.08 wt.% MWCNT) percolation threshold than previously reported. Thus, the conductivities of 7.62 × 10−5 and 1.48 × 10−3 S cm−1 were achieved in the MWCNT/PS composites through homogeneous dispersion of 0.08 and 0.26 wt.% CNTs, respectively in the in situ polymerized PS region by using 70 wt.% PS beads during the polymerization. The extent of dispersion and location of the MWCNTs in the PS matrix has been investigated with a scanning and transmission electron microscopy. The conductivity of the composites was increased with increasing wt.% of the PS beads at a constant CNT loading, indicating the formation of a more continuous network structure of the CNTs in PS matrix.  相似文献   

10.
A novel nitrile butadiene rubber (NBR)/magnetite (Fe3O4) nanocomposite for electromagnetic interference (EMI) shielding at microwave frequency was successfully fabricated. The structural features of as-synthesized magnetite and NBR/Fe3O4 were examined by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The number of elastically effective chains, volume fraction of rubber, interparticle distance among conductive sites, polymer–filler interaction, and porosity of the nanocomposites were evaluated. The mechanical properties, including the tensile strength, elongation at break, and hardness, of the composites were measured. The static electrical properties, such as the electrical conductivity, carrier mobility, and number of charge carriers, as a function of magnetite content were evaluated. The interrelation between the electrical conductivity, shielding effectiveness (SE), dielectric constant, and skin depth of the composites are discussed. Finally, the EMI SE versus frequency was tested. The results reveal that an SE of 28–91 dB against EMI in the 1–12 GHz range depended on the loading of the conducting magnetite within the NBR matrix. Accordingly, these nanocomposites may used in the field of microwave absorption devices. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

12.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

13.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) can be conspicuously enhanced at low conductive filler contents with the formation of segregated structure in the conductive polymer composites (CPCs). Nevertheless, poor interface adhesion of segregated composites results in poor mechanical properties due to the selective distribution of conductive fillers. In this work, a flexible approach was applied to fabricate the poly(phenylene sulfide)/poly(arylene sulfide sulfone)/graphene nanoplates (GNPs) composite with a unique double percolated structure. This composite exhibits an outstanding EMI SE of 38.8 dB with only 3 wt % GNPs, which is comparable to that of the conventional segregated structure counterpart. What is more, the tensile strength and Young's modulus of double percolated composites with 3 wt % GNPs are remarkably improved by ~892 and ~274% compared to conventional segregated structure, achieving 37.7 and 1788.3 MPa, respectively. This work provides a valuable method for producing CPCs with high EMI shielding performances and outstanding mechanical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48709.  相似文献   

15.
This work evaluates the influence of two types of carbonaceous fillers, carbon black (CB) and carbon nanotubes (CNTs), on the electrical, electromagnetic, and rheological properties of composites based on poly(acrylonitrile‐co‐butadiene‐co‐styrene) (ABS) prepared by the melt mixing. Electrical conductivity, electromagnetic shielding efficiency (EMI SE) in the X‐band frequency range (8–12.4 GHz), and melt flow index (MFI) results showed that ABS/CNT composites exhibit higher electrical conductivity and EMI SE, but lower MFI when compared to ABS/CB composites. The electrical conductivity of the binary composites showed an increase of around 16 orders of magnitude, when compared to neat ABS, for both fillers. Binary composites with 5 and 15 wt % of filler showed an EMI SE of, respectively, ?44 and ?83 dB for ABS/CNT, and ?9 and ?34 dB for ABS/CB. MFI for binary composites with 5 wt % were 15.45 and 0.55 g/10 min for CB and CNT, respectively. Hybrid composites ABS/CNT.CB with 3 wt % total filler and fraction 50:50 and 75:25 showed good correlation between EMI SE and MFI. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46546.  相似文献   

16.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

17.
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.  相似文献   

18.
The microstructure, electromagnetic interference (EMI) shielding effectiveness (SE), DC electrical conductivity, AC electrical conductivity and complex permittivity of nanostructured polymeric materials filled with three different carbon nanofillers of different structures and intrinsic electrical properties were investigated. The nanofillers were multiwall carbon nanotubes (MWCNT), carbon nanofibers (CNF) and high structure carbon black (HS-CB) nanoparticles and the polymer was acrylonitrile-butadiene-styrene (ABS). In addition, the EMI SE mechanisms and the relation between the AC electrical conductivity in the X-band frequency range and the DC electrical conductivity were studied. The nanocomposites were fabricated by solution mixing and characterized by uniform dispersion of the nanofillers within the polymer matrix. It was found that, at the same nanofiller loading, the EMI SE, permittivity and electrical conductivity of the nanocomposites decreased in the following order: MWCNT > CNF > CB. MWCNT based nanocomposites exhibited the lowest electrical percolation threshold and the highest EMI SE owning to the higher aspect ratio and electrical conductivity of MWCNT compared to CNF and HS-CB. The AC conductivity in the X-band frequency range was found to be independent of frequency.  相似文献   

19.
Electrical and electromagnetic interference shielding effectiveness (EMI SE) properties of the ethylene methyl acrylate (EMA)/multiwalled carbon nanotube (MWNT) nanocomposites have been studied. High resolution transmission electron microscope (HRTEM) was used to validate the MWNTs dispersion state and network connections of its microstructure. The electrical resistance of the nanocomposites decreases significantly with MWNTs content. DC resistivity and AC conductivity measurement on the nanocomposite samples showed that the insulator to conductor transition took place within 10 wt% MWNTs concentration. It has been found that as MWNT concentration increased network connections improved. The EMI SE of the nanocomposites has also been investigated. The highest SE (∼20 dB) of these nanocomposites is realistic for an industrial application. EMA/MWNT nanocomposites provide sufficient intrinsic EMI shielding capability which may be hopeful for electrical and electronic applications. The morphology correlates well with the electrical and electromagnetic behavior of these nanocomposites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号