首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n‐octyltriethoxysilane [OTES]) were each tested at three concentrations. Scanning electron microscopy coupled with energy dispersive spectroscopy revealed that the silane coupling agents markedly increased the Si content of the treated fibers. The Si distribution was not completely homogenous but was abundant in the treated samples. The treated fibers had higher contact angles for water and lower moisture adsorption than the control. Of the coupling agents tested, OTES treated fibers had the highest moisture resistance. This was likely due to the greater chain length of the aliphatic side group coupled to OTES. The use of silane coupling agents with alkyl side chains could improve the functional properties of pulp fiber and increase its compatibility with hydrophobic polymers. POLYM. ENG. SCI., 55:1273?1280, 2015. © 2015 Society of Plastics Engineers  相似文献   

2.
Water-repellent all-cellulose nanocomposite (ACNC) was made using the silane coupling agent dodecyltriethoxysilane. The ACNC, consisting of cellulose nanofibers incorporated into a cellulosic matrix, was prepared by reducing crystallinity in the surface of the cellulose nanofibers using DMAc/LiCl solvent, followed by applying pressure and drying. The ACNC surface turned from hydrophilic to hydrophobic by silane coupling treatment. X-ray photoelectron spectroscopy (XPS) measurements confirmed the existence of the silane coupling agent on the surface after treatment. As silane concentration increased, the water contact angle of treated ACNC increased, to a maximum value of 93°. Thermogravimetric analysis and atomic force micrographs showed a multilayered treatment. The silane treated ACNC showed lower water absorption compared to that of untreated one. The silane coupling treatment was also found to increase the mechanical performance of ACNC. Creation of a hydrophobic surface reduces the potential damage associated with water in outdoor applications of ACNC.  相似文献   

3.
Superhydrophobic nanocomposite fiber membranes were prepared by blend electrospinning of poly(vinylidene fluoride) (PVDF) mixed with silane coupling agent modified SiO2 nanoparticles. The nanoparticles were prepared by the sol–gel method, and the average particle diameter was measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The effects of the type of silane coupling agent, such as n‐octyltriethoxysilane, vinyltrimethoxysilane (A‐171), and vinyltriethoxysilane (A‐151), and the mass ratio of the modified silica particles and PVDF on the surface wettability of the composite fiber membrane were investigated. The results indicated that the incorporation of silane coupling agent modified silica particles into the PVDF membrane increased the roughness of the surface and formed micro/nano dual‐scale structure compared to the pristine PVDF membrane, which was responsible for the superhydrophobicity and self‐cleaning property of the nanocomposite fiber membranes. The value of water contact angle (CA) increased with the increase of the content of modified SiO2 nanoparticles in the nanocomposite membrane, ranging from 149.8° to 160.1° as the mass ratio of modified 170 nm SiO2 with PVDF matrix increased from 0.5:1 to 5:1, indicating the membrane possesses a superhydrophobic surface. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44501.  相似文献   

4.
A novel process of surface modification of silica fillers has been performed by coating with an acrylate monomer, trimethylol propane triacrylate (TMPTA) and with a silane coupling agent, triethoxy vinyl silane (TEVS), followed by electron beam irradiation of these coated fillers. The surface‐modified fillers have been characterized by Fourier‐Transform Infrared Analysis (FTIR), Electron Spectroscopy for Chemical Analysis (ESCA), Contact angle measurements by dynamic wicking method, Scanning Electron Microscopy (SEM), Energy dispersive X‐ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Fractal studies, Thermogravimetric analysis (TGA), and X‐ray diffraction (XRD) studies. Presence of the acrylate and the silane coupling agent on the modified fillers is confirmed from the above studies. The contact angle measurements suggest a significant improvement in hydrophobicity of the treated fillers, which is supported by water flotation test. After irradiation and acrylate treatment an increase in filler aggregation is observed, which is not as significant in the case of silanized silica filler. However, XRD studies demonstrate that the entire modification process does not alter the bulk properties of the fillers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2255–2268, 2002  相似文献   

5.
以端羟基聚二甲基硅氧烷、不同粒径的改性二氧化硅粒子、硅烷偶联剂及助剂为原料,采用有机-无机杂化纳米技术,制得具有高疏水性能的室温硫化(RTV)硅橡胶防污闪涂料。采用扫描电镜表征了涂层的表面形貌,用静态接触角测试仪测定了二氧化硅用量对涂层的憎水性及憎水迁移性变化。结果表明,固定纳米级二氧化硅的用量,当微米级二氧化硅用量为10份时,涂层表面形成一定的微米二级粗糙结构,涂层表面接触角为131.50,具有较高的疏水性能;同时,涂层也具有优良的憎水迁移性。此时,硅橡胶的拉伸强度为2.08 MPa,伸长率581%,撕裂强度5.65 kN/m,体积电阻率1.38×1015Ω·m,污秽湿工频闪络电压3 kV,阻燃性FV-0级。  相似文献   

6.
The effects of mechanical mixing and filler–filler (F–F) and polymer–filler (P–F) interactions on the normalized state of a filler microdispersion [d(x)] and the viscoelastic properties of silica‐filled rubbers were studied. The rubbers were prepared with or without the addition of n‐octyl‐triethoxysilane (OTES) to modify F–F interactions or coupling agents such as 3‐mercaptopropyl‐trimethoxysilane and 3‐mercaptopropyl‐triethoxysilane (MPTES) to increase P–F interactions. Increased mixing improved d(x) and enhanced the hysteresis temperature dependence (HTD) by giving a higher tan δ value near the compound glass‐transition temperature (Tg) but lowered tan δ at elevated temperatures for stocks containing a coupling agent. The changes in P–F and F–F interactions in rubbers with mixing and subsequent thermal treatment were shown to be responsible for the property differences observed among stocks containing different silanes. Attempts were made to quantify the efficiency for improving d(x) with various silanes. The increased P–F interactions in compounds containing MPTES showed better efficiency for improving d(x) and enhancing HTD in comparison with OTES. It was also demonstrated that the change in hysteresis near Tg was mainly governed by the degree of filler networking, whereas elevated‐temperature hysteresis was strongly influenced by the P–F interactions in compounds. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Electropolymerization nanofilm was prepared by cyclic voltammogram with 6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol monosodium (DAN) on the AA5052 surface in 0.15M NaNO2 at 10°C, then octyl‐triethoxysilane (OTES) film was fabricated on the poly(6N,N‐diallylamino‐1,3,5‐triazine‐2,4‐dithiol) nanofilm (PDA) covered AA5052 surface by self‐assembling method to obtain the composite polymeric nanofilm (C‐PDA/OTES). The composite polymeric nanofilm was characterized by means of FTIR spectra, scanning electron microscope (SEM), contact angle, and potentiodynamic polarization. The results showed that the C‐PDA/OTES covered surface was more homogenous, compact, hydrophobic compared with PDA covered surface and had excellent protection efficiency. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
以三氟丙基甲基环三硅氧烷(D3F)、二甲基氯硅烷、甲基二氯硅烷、乙烯基三甲氧基硅烷(VTMS)为主要原料,通过阴离子开环聚合和硅氢加成反应合成了一系列短氟碳链含氟硅烷偶联剂。载玻片表面经纳米二氧化硅溶胶涂膜和硅烷偶联剂表面修饰得到疏水涂层。探究了不同硅烷偶联剂对于涂层疏水性、附着力、硬度、透过率等性能的影响。结果表明,同类型含氟硅烷偶联剂中氟含量越大,其修饰的涂层接触角越大;相似相对分子质量及氟含量情况下,直链型含氟硅烷偶联剂修饰的涂层疏水性优于支链型修饰的涂层。经含氟硅烷偶联剂修饰的疏水涂层中,接触角最大的是由聚合度为9的支链型含氟硅烷偶联剂(DF3)修饰的涂层,可达141.6°。疏水涂层的附着力均达1级,硬度均达H,可见光透过率高于82.9%,具有良好的自清洁性能。  相似文献   

9.
This paper reports the synthesis of coating silica particles, in order to design hybrid materials with hydrophobic surface properties. The silica particles were prepared in basic conditions under atmosphere of carbon dioxide (CO2), using tetraethylorthosilicate (TEOS) as a precursor and octyltriethoxysilane (OTES) as a surface modifying agent. It was demonstrated that the contact angles of silica hybrid films could be changed by varying temperature and pressure of CO2. The investigation of the prepared hybrid materials by dynamic light scattering (DLS) and environmental scanning electron microscopy (ESEM), respectively, showed that they consisted mainly of particles with a diameter of 100–250 nm. Fourier transform infrared (FT-IR) spectra indicate that the interaction between the coupling reagents, at different conditions, is mainly through chemical bonding.  相似文献   

10.
A class of alkoxy‐modified silsesquioxane (AMS) containing less than 5 wt % of latent alcohol that can be used for compounding silica‐filled rubbers is described. The AMS derived from octyl‐triethoxysilane (OTES) behaves as a good shielding agent in silica‐filled rubber to significantly reduce the compound Mooney viscosity and filler flocculation. The co‐AMS prepared from OTES and 3‐mercaptopropyl‐trimethoxysilane yielded an effective shielding and coupling agent for reinforcing the silica‐filled vulcanizates. The alcohols released as volatile organic compounds (VOC) are quantified during compounding and processing along with the compound properties of silica‐filled vulcanizates containing various silicon compounds such as bis‐(triethoxysilyl propyl) disulfide (TESPD), a polyhedral oligomeric silsesquioxanes (POSS), OTES, AMS, or co‐AMS. Dynamic mechanical properties such as dependences of hysteresis on temperature (HTD) and storage modulus on strain (MSD) are discussed. Stronger HTD and weaker MSD were found in stocks containing co‐AMS or a combination of AMS and a coupling agent when compared with that with TESPD. Stronger HTD and weaker MSD may benefit a tire compound with lower rolling resistance, more stable handling performance, as well as better wet traction. More importantly, the VOC released during the manufacture of rubber articles are significantly reduced in stocks containing AMS (or co‐AMS) when compared with those with a silane. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A facile method to prepare superhydrophobic fluoropolymer/SiO2 nanocomposites coating on polyester (PET) fabrics was presented. The vinyl nanosilica (V? SiO2) hydrosols were prepared via one‐step water‐based sol‐gel reaction with vinyl trimethoxy silane as the precursors in the presence of the base catalyst and composite surfactant. Based on the V? SiO2 hydrosol, a fluorinated acrylic polymer/silica (FAP/SiO2) nanocomposite was prepared by emulsion polymerization. The FAP/SiO2 nanocomposites were coated onto the polyester fabrics by one‐step process to achieve superhydrophobic surfaces. The results showed that silica nanoparticles were successfully incorporated into the FAP/SiO2 nanocomposites, and a specific surface topography and a low surface free energy were simultaneously introduced onto PET fibers. The prepared PET fabric showed excellent superhydrophobicity with a water contact angle of 151.5° for a 5 μL water droplet and a water shedding angle of 12° for a 15 μL. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40340.  相似文献   

12.
纳米白炭黑的复合改性及性能表征   总被引:1,自引:1,他引:0       下载免费PDF全文
为使纳米白炭黑具有强疏水性,在传统硅烷偶联剂改性工艺基础上,引入了硬脂酸进行复合改性,制备出了具有高疏水性能的纳米白炭黑。采用红外光谱(FTIR)、X射线光电子能谱(XPS)、接触角测试和沉降实验等研究了改性后试样的结构和性能,并讨论分析了复合改性的机理。结果表明:通过硅烷偶联剂改性,白炭黑表面接枝了氨基(—NH2)基团;硬脂酸改性后,—NH2基团与硬脂酸的羧基基团(—COOH)形成酰胺键(—CONH—),白炭黑最终表面形成了疏水性能优异的—(CH2)3COHN—(CH2)16CH3基团。复合改性后的纳米白炭黑表面通过化学键接枝了硬脂酸分子,与水的接触角达到了140°,具有优异的疏水性能。  相似文献   

13.
Photofunctional polymer as silane coupling agent (PFD) was prepared by free radical copolymerization of 4‐vinylbenzyl N,N‐diethyldithiocarbamate (VBDC) and methyl methacrylate (MMA) in the presence of (3‐mercaptopropyl)trimethoxysilane (MPMS) as chain transfer agent. Next, silane (SiO2; the average diameter Dn = 192 nm) nanoparticles was surface‐modified with PFD and 3‐(trimethoxysilyl)propyl methacrylate (γ‐MPS) by covalent bond formed between silanol groups and silane coupling agents. The PFD and γ‐MPS functionalizations changed the silica surface into hydrophobic nature and provided grafting initiation sites and methacrylate terminal groups respectively. We performed the construction of hybrid nanocomposites by using these modified SiO2 nanoparticles. It was found from electron microscopy observations that SiO2 particles were packed into repeating cubic arrangements in a poly(methyl methacrylate) (PMMA) matrix such as colloidal crystals. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
A weather resistant super‐hydrophobic coating that can offer good substrate adhesion and yet to be easily processed at large scale can be of practical use in emerging fields of self‐cleaning and anti‐icing paint, combing all these properties together remains challenging task. Here we describe a composite coating composed of a fluorinated epoxy resin emulsion with embedded in situ surface‐modified dual‐scale nano‐silica, which displayed durable super‐hydrophobicity and excellent adhesive strength. The as‐prepared coating possesses water contact angle of 158.6 ± 1°, sliding angle around 3.8 ± 0.2° which remain stable even under acidic/alkaline, heat/cool, and accelerated aging treatment. The results demonstrate that surface roughness had a micron‐ and nanometer scale distribution with increased particle loading beyond 40 wt %. Through quantitative comparison of surface Attenuated Total Reflection (ATR) with bulk FT‐IR transmission spectra, a gradient coating with surface enrichment of hydrophobic groups was determined. The air‐side fluorinated polysiloxane‐rich layer endows coating with weather‐resistance and ultra‐hydrophobicity while bottom epoxy resin layer enhances substrate adhesion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40955.  相似文献   

15.
BACKGROUND: To create a hydrophobic surface, a commonly used two‐step process is the formation of a rough surface and its subsequent modification with materials of low surface energy. Here, a new method for making a hydrophobic surface is proposed using emulsion copolymerization with a low‐surface‐energy fluoropolymer in the presence of a high percentage of silica particles creating a well‐spread roughness. RESULTS: Irregular core–shell structural composite particles such as of snowman shape and sandwich shape were obtained and characterized. The hydrophobicity and chemical structure of the hybrid film were investigated. It was found that strong inter‐ and intramolecular chemical bonding in the composite film may improve the properties of the hybrid film. Enrichment of fluorine on the film surface and well‐distributed roughness due to the silica particles covered by the fluoropolymer contribute to the increased hydrophobicity of the film. The water contact angle on the film increased from 106 ± 2° to 135 ± 2°. CONCLUSION: The stable core–shell hybrid latex synthesized in this work will be of use in preparing high‐performance hydrophobic aqueous coatings. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Colloidal silica nanoparticles synthesized from tetraethoxysiliane via a sol–gel process were surface modified by 3-(trimethoxysilyl)propyl methacrylate (MSMA) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS). MSMA acted both as a C=C provider and a coupling agent, whereas HMDS was used to prevent particle aggregation and engender hydrophobicity. The modified silica particles (HMSiO2) were UV-cured together with the crosslinking agent, dipentaerythritol hexa-acrylate (DPHA) to form coatings on poly(methyl methacrylate) (PMMA) substrates. Dynamic light scattering of the synthesized sols indicated that the average size of HMSiO2 was ca. 10 nm, consistent with that obtained from TEM imaging. FTIR spectroscopic analyses demonstrated chemical attachment of HMDS to the silica particles. The cured coatings were characterized in terms of water contact angle, light transmittance, hardness, abrasion resistance, and surface morphology. It was found that hydrophobicity of the coatings increased while light transmittance and hardness decreased with increasing HMDS content. DPHA played the role of providing mechanical strength and adherence; however, the coatings became lightly hazy when the weight ratio of DPHA/silica fell in the range 0.3–0.7. In the optimal case, a hard coating (4H) with water contact angle of 108° and transmittance of ~100% (vs PMMA) had been obtained at the DPHA content of 10 wt%.  相似文献   

17.
A polyurethane (PU) hydrophobic coating was prepared by the two‐component method, polycarbonate diol and isophorone diisocyanate becoming a two‐phase composition. The PU films with hydrophobic surface were prepared by establishing a rough structure on the surface of silica (SiO2) modified with silane coupling agents (γ‐(2,3‐epoxypropoxy)propytrimethoxysilane (KH560) and (heptadecafluoro‐1,1,2,2‐tetradecyl)trimethoxysilane (FAS)). First, the surface of SiO2 was covered by a layer of hydrophobic methyl and fluorocarbon (C–F) groups. Then, the SiO2 and modified SiO2 were obtained by the introduction of KH560 and FAS with the silanol reaction by ultrasonic stirring. The effect of SiO2 and modified SiO2 on the structure and hydrophobic properties of PU was investigated by a series of test instruments. The results showed that the introduction of SiO2 and modified SiO2 was beneficial for increasing the roughness of the PU coating surface; the roughness of FAS/SiO2‐PU could reach up to 14.790 nm, four times better than pure PU. A hydrophobic modified PU coating with water contact angle 123° was fabricated by using the hydrophobic C–F group FAS as a low surface energy material and establishing a micro rough structure on the surface of PU. Moreover, PU modified with KH560 and FAS can reduce the glass transition temperature (Tg) of soft segments, resulting in improvement of micro‐phase separation. © 2020 Society of Chemical Industry  相似文献   

18.
Understanding the nature of hydrophobicity has fundamental importance in environmental applications.Using spherical silica nanoparticles(diameter=369±7 nm)as the model material,the current study investigates the relationship between the alkyl chain network and hydrophobicity.Two alkyl silanes with different chain length(triethoxymethylsilane(C1)vs.trimethoxy(octyl)silane(C8))were utilised separately for the functionalisation of the nanoparticles.Water contact angle and inverse gas chromatography results show that the alkyl chain length is essential for controlling hydrophobicity,as the octyl-functionalised nanoparticles were highly hydrophobic(water contact angle=150.6°±6.6°),whereas the methyl-functionalised nanoparticles were hydrophilic(i.e.,water contact angle=0°,similar to the pristine nanoparticles).The homogeneity of the octyl-chain network also has a significant effect on hydrophobicity,as the water contact angle was reduced significantly from 148.4°±3.5°to 30.5°±1.0°with a methyl-/octyl-silane mixture(ratio=160:40μL·g–1 nanoparticles).  相似文献   

19.
Filler dispersion is a critical factor in determining the properties of filled rubber composites. Silica has a high density of silanol groups on the surface, which lead to strong filler–filler interactions and a poor filler dispersions. A cure accelerator, N‐tert‐butyl‐2‐benzothiazole sulfenamide (TBBS), was found to improve filler dispersion in silica‐filled natural rubber (NR) compounds. For the silica‐filled NR compounds without the silane coupling agent, the reversion ratio generally increased with increase in TBBS content, whereas those of the silica‐filled NR compounds containing the silane coupling agent and carbon black‐filled NR compounds decreased linearly. The tensile strength of the silica‐filled NR vulcanizate without the silane coupling agent increased as the TBBS content increased, whereas carbon black‐filled samples did not show a specific trend. The experimental results were explained by TBBS adsorption on the silica surface and the improvement of silica dispersion with the aid of TBBS. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
针对无机二氧化钛(TiO2)粒子在有机体系中的分散性问题,采用硅烷偶联剂KH-570对无机填料钛白粉(二氧化钛,TiO2)的表面进行有机化改性;并通过红外光谱(FT-IR)、接触角测试、沉降实验、扫描电子显微镜(SEM)等手段表征表面改性TiO2粒子的结构,测试其超疏水性能,分析超疏水表面形成的机理。结果表明,经KH-570表面改性的TiO2粒子的疏水性和分散性得到明显改善,当KH-570质量分数达到15%时,表面改性的TiO2涂层与水的静态接触角达152.5˚,表现出良好的超疏水性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号