首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radical bulk and emulsion co‐ and terpolymerizations of conjugated linoleic acid (CLA) with styrene (Sty) and butyl acrylate (BA) were performed at 80 °C. The polymerizations were monitored using an attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopic probe. Bulk polymerizations were monitored off‐line while emulsion polymerizations were monitored in‐line. Absorbance peaks related to the monomers and polymer were tracked to provide conversion and polymer composition data using a multivariate calibration method. Off‐line measurements using gravimetry and 1H‐NMR spectroscopy were compared to the ATR‐FTIR data and no significant differences were detected between the measurement methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43574.  相似文献   

2.
The dispersion polymerization of n‐butyl acrylate (BA) was investigated using alcohol/water mixtures as the dispersion medium, 4,4′ ‐azobis‐(4‐cyanopentanoic acid) as the initiator, and polyvinylpyrrolidone (PVP) as the stabilizer. The effects of polymerization parameters, such as the alcohol/water ratio in the medium and the type and concentration of the polymeric stabilizer, on the resulting particle size and size distribution were studied. The final particle size and the stability of the dispersion system were found to be greatly influenced by the type of alcohol used in the mixture; that is, methanol or ethanol, even though the apparent solubility parameters are almost the same for the two types of mixtures. Poly(butyl acrylate) particles with controlled size and size distribution (monodisperse), and gel content were successfully prepared in a 90/10 methanol/water medium. It was found that the particle size decreased with increasing initiator concentration. This is the opposite of what was previously reported in the dispersion polymerizations of styrene and methyl methacrylate. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2692–2709, 2002  相似文献   

3.
Poly(n‐butyl methacrylate) (PBMA)‐b‐polystyrene (PSt) diblock copolymers were synthesized by emulsion atom transfer radical polymerization (ATRP). PBMA macroinitiators that contained alkyl bromide end groups were obtained by the emulsion ATRP of n‐butyl methacrylate with BrCH3CHCOOC2H5 as the initiator; these were used to initiate the ATRP of styrene (St). The latter procedure was carried out at 85°C with CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipyridine as the catalyst and polyoxyethylene(23) lauryl ether as the surfactant. With this technique, PBMA‐b‐PSt diblock copolymers were synthesized. The polymerization was nearly controlled; the ATRP of St from the macroinitiators showed linear increases in number‐average molecular weight with conversion. The block copolymers were characterized with IR spectroscopy, 1H‐NMR, and differential scanning calorimetry. The effects of the molecular weight of the macroinitiators, macroinitiator concentration, catalyst concentration, surfactant concentration, and temperature on the polymerization were also investigated. Thermodynamic data and activation parameters for the ATRP are also reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2123–2129, 2005  相似文献   

4.
Polyacrylamide‐grafted barley (BAR‐g‐PAM) was synthesized by ceric ion‐based conventional method. The grafting of polyacrylamide chains on the polysaccharide backbone was confirmed through various physicochemical techniques such as intrinsic viscosity measurement, 13C‐NMR spectra, FTIR spectroscopy, elemental analysis, scanning electron microscopy morphology, thermogravimetric analysis study, number‐average molecular weight, and aqueous solubility. Furthermore, flocculation efficacy of the graft copolymers was studied in coal fine suspension through “jar test” procedure, toward its possible application as a novel flocculant for treatment of coal washery effluent. BAR‐g‐PAM is reported as a novel flocculant that can be used for bulk treatment of coal washery effluents. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41046.  相似文献   

5.
Atom transfer radical polymerization of n‐butyl methacrylate (BMA) was conducted in an aqueous dispersed system with different kinds of copper complexes. The partitioning behavior of the copper complexes, including CuCl/4,4′‐di(5‐nonyl)‐2,2′‐bipydine (dNbpy), CuCl2/dNbpy, CuCl/2,2′‐bipydine (bpy), CuCl2/bpy, CuCl/bis(N,N′‐dimethylaminoethyl)ether (bde), and CuCl2/bde between the monomer (BMA), and water was studied in detail with ultraviolet‐visible spectroscopy. The results show that with a less hydrophobic ligand, such as bpy or bde, most of the Cu(I) or the Cu(II) complexes migrated from the BMA phase to the aqueous phase, the atom transfer equilibrium was destroyed, and the polymerization was nearly not controlled; it converted to classical emulsion polymerization. As to the very hydrophobic ligand dNbpy, although the partitioning study of the copper complexes indicated that not all the copper species were restricted to the organic phase, the linear correlation between the molecular weight and the monomer conversion and the narrow polydispersities confirmed that the polymerization was still quite well controlled. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3175–3179, 2003  相似文献   

6.
The free‐radical copolymerization of methyl methacrylate (MMA) with NP‐tolylmalemide (NPTMI) at 77°C in cyclohexanone solution initiated by AIBN was studied. The copolymer composition was calculated from the nitrogen content estimated by the Mico–Kijedldahl's method and by elemental analysis. The reactivity ratios have been calculated by Fineman and Ross method. The monomer reactivity ratios were rNPTMI = 1.24, rMMA = 2.1. The glass transition temperature (Tg) of the copolymers were determined by torsion braid analysis (TBA). The thermal stability was determined by thermogravimetric analysis (TGA). T50, temperature at which the weight loss reaches 50%, was abstained. The results showed that the M n and M w increased, whereas the NPTMI feed content increased. The Tg and T50 increased dramatically. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 867–870, 2004  相似文献   

7.
The relevance of penultimate monomer unit (PMU) effects and the selection of the correct initiator species under typical reversible deactivation radical copolymerization conditions is illustrated, using matrix‐based kinetic Monte Carlo simulations allowing the visualization of all monomer sequences along individual chains. Initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) is selected as illustrative polymerization technique with n‐butyl acrylate and methyl methacrylate as comonomers, aiming at the synthesis of well‐defined gradient copolymers. Using literature based model parameters, in particular temperature dependent monomer and radical reactivity ratios, it is demonstrated that PMU effects on propagation and ATRP (de)activation cannot be ignored to identify the most suited ICAR ATRP reactants (e.g., tertiary ATRP initiator) and reaction conditions (e.g., feeding rates under fed‐batch conditions). The formulated insights highlight the need for further research on PMU effects on all reaction steps in radical polymerization. © 2017 American Institute of Chemical Engineers AIChE J, 2017  相似文献   

8.
Reverse atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) was conducted in an aqueous dispersed system. The influence of the surfactant, catalyst, reaction time and temperature on the colloidal stability and the control of polymerization was investigated. As a result, using an azo initiator (AIBN), a non‐ionic surfactant (Brij 35) and a hydrophobic ligand (dNbpy) to complex a copper halide, polymers with predetermined molecular weight and low polydispersity were obtained as stable latexes. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Microencapsulation is an effective strategy to improve the storage stability of βcarotene. This article investigated the potential and effectiveness of soy protein isolate (SPI) and octenylsuccinic anhydride‐modified starch (MS), alone or in combination (1:1, w/w), to encapsulate βcarotene by spray drying. The results indicated that the microcapsule with MS exhibited much lower encapsulation efficiency (NE) and poorer dissolution behavior, but much better redispersion behavior, than that with SPI or its blends with MS. The NE was basically unaffected by total solid content (TC) or core/wall ratio; increasing the TC impaired the dissolution and/or redispersion behavior. The dispersion behavior was closely associated with the morphology of the microcapsules. The encapsulated βcarotene suffered a progressive loss upon storage under high humid or temperature environment, but it exhibited extraordinary stability at low temperatures (e.g., 4°C). The βcarotene degradation was independent of sunlight. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40399.  相似文献   

10.
Defined diblock and triblock copolymers composed of methyl methacrylate‐co‐glycidyl methacrylate block and 3‐{3,5,7,9,11,13,15‐hepta(2‐methylpropyl)‐pentacyclo[9.5.1.13,9.15,15.17,13]‐octasiloxan‐1‐yl}propyl methacrylate block(s), i.e., P(MMA‐co‐GMA)‐b‐PiBuPOSSMA and PiBuPOSSMA‐b‐P(MMA‐co‐GMA)‐b‐PiBuPOSSMA, were synthesized by atom transfer radical polymerization (ATRP). First, monofunctional and bifunctional P(MMA‐co‐GMA) copolymers were synthesized by ATRP. Subsequently, these copolymers were successfully used as macroinitiators for ATRP of POSS‐containing methacrylate monomer. The process showed high initiation efficiency of macroinitiators and led to products with low dispersity. The synthesized block copolymers were characterized by size exclusion chromatography, 1H‐NMR spectroscopy and their glass transition temperatures were determined by differential scanning calorimetry. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
A novel bio‐based and flame‐retardant UV‐curable vinyl ester resin (VER) monomer named Diglycidyl ester of maleinized dipentene modified with dibutyphosphate and methacrylic anhydride (MDDMD) was synthesized from industrial dipentene via Diels‐Alder reaction, glycidylation, epoxy ring‐opening reaction, and esterification. Its chemical structures were characterized by Fourier transform infrared (FTIR) analysis and proton nuclear magnetic resonance (1H‐NMR). In order to improve its flexibility, we prepared a series of copolymers under UV light radiation by mixing it with certain proportions of poly(ethylene glycol) dimethacrylate‐200 (PEGDMA‐200) which contained flexible groups. Their tensile property, curing degrees (CD), hardness, limiting oxygen index (LOI), dynamic mechanical thermal properties, and thermostability were all investigated. The cured mixed resins have a relatively high tensile strength of 10.05 MPa and curing degrees up to 92.5%. Both hardness (range: 50 to 23 HD) and LOI (range: 22.8% to 24.4%) of cured resins are improved with the increase of MDDMD content. Dynamic mechanical analysis (DMA) shows that their glass transition temperatures rise with the increase of MDDMD content. Thermogravimetric analysis (TGA) shows that the thermal stability of cured resins is enhanced with the increase of PEGDMA‐200 content, as the main thermal initial decomposition temperatures are all above 260 °C and char yield at 800 °C are above 18.10%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44084.  相似文献   

12.
Kinetics of curing of maleated castor oil glycerides with styrene was studied by differential scanning calorimetry and rheology. The resin was synthesized from biodiesel‐derived crude glycerol. Curing rates were fitted to several empirical models (autocatalytic model, Kamal's model and a model with vitrification). The three models showed a good fitting with experimental data at conversions lower than 0.55 for temperatures ranging from 30 to 50°C. However, the model that includes vitrification showed a better fitting in the entire range of conversions and the same temperatures. At higher temperatures (50–60°C), some deviations were observed for the three models at low and high conversions. Gel times were obtained from rheological studies and the apparent activation energies were calculated thereof. Gel times were 300–2700 s. The values of apparent activation energy obtained for this castor oil‐based copolymer (47.2–52.3 kJ/mol) were within range of commercial unsaturated polyester resins. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41344.  相似文献   

13.
In this work, two monomers, acrylamide (AM) and [2‐(methacryloyloxy)ethyl]trimethylammonium chloride (DMC) were copolymerized from kraft lignin (KL) in an aqueous suspension initiated by free radical copolymerization in the presence of potassium persulfate. The impact of copolymerization conditions on the charge density and molecular weight of the copolymers was investigated. The molecular weight and mass balance analyses confirmed that the homopolymer [polyDMC (PDMC) and polyAM (PAM)] and undesired copolymer (AM–DMC) productions dominated as time, initiator, and DMC dosage increased more than the optimum values. The activation energy of the polymerization of KL and AM (43.02 kJ mol?1), KL and DMC (21.99 kJ mol?1), AM (14.54 kJ mol?1), DMC (10.34 kJ mol?1), and AM and DMC (18.13 kJ mol?1) was determined. Proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, and elemental analysis confirmed the production of KL–AM–DMC copolymer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46338.  相似文献   

14.
Collagen, a prominent biopolymer, which is famous for its excellent biological activity, has been used extensively for tissue engineering applications. In this study, a novel solvent system for collagen was developed with an ionic liquid, 1‐ethyl‐3‐methylimidazolium acetate ([EMIM][Ac]), solvent system. A series of sodium salts were introduced into this solvent system to enhance collagen's dissolution procedure. The results show that the solubility of collagen was significantly influenced by the temperature and sodium salts. The solubility reached up to approximately 11% in the [EMIM][Ac]/Na2HPO4 system at 45°C. However, the structure of the regenerated collagen (Col‐regenerated) may have been damaged. Hence, we focused on the structural integrity of the collagen regenerated from the [EMIM][Ac] solvent system by the methods of sodium dodecyl sulfate–polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy, ultrasensitive differential scanning calorimetry, atomic force microscopy, X‐ray diffraction, and circular dichroism because its signature biological and physicochemical properties were based on its structural integrity. Meanwhile, a possible dissolution mechanism was proposed. The results show that the triple‐helical structure of collagen regenerated from the [EMIM][Ac] solvent system below 35°C was retained to a large extent. The biocompatibility of Col‐regenerated was first characterized with a fibroblast adhesion and proliferation model. It showed that the Col‐regenerated had almost the same good biological activity as nature collagen, and this indicated the potential application of [EMIM][Ac] in tissue engineering. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2245–2256, 2013  相似文献   

15.
Plasma polymerized γ‐terpinene (pp?GT) thin films are fabricated using RF plasma polymerization. MIM structures are fabricated and using the capacitive structures dielectric properties of the material is studied. The dielectric constant values are found to be in good agreement with those determined from ellipsometric data. At a frequency of 100 kHz, the dielectric constant varies with RF deposition power, from 3.69 (10 W) to 3.24 (75 W). The current density–voltage (J?V) characteristics of pp–GT thin films are investigated as a function of RF deposition power at room temperature to determine the resistivity and DC conduction mechanism of the films. At higher applied voltage region, Schottky conduction is the dominant DC conduction mechanism. The capacitance and the loss tangent are found to be frequency dependent. The conductivity of the pp?GT thin films is found to decrease from 1.39 × 10?12 S/cm (10 W) to 1.02 × 10?13 S/cm (75 W) and attributed to the change in the chemical composition and structure of the polymer. The breakdown field for pp–GT thin films increases from 1.48 MV/cm (10 W) to 2 MV/cm (75 W). A single broad relaxation peak is observed indicating the contribution of multiple relaxations to the dielectric response for temperature dependent J?V. The distribution of these relaxation times is determined through regularization methods. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42318.  相似文献   

16.
This is a first report of the synthesis and characterization of acrylic copolymers from methyl methacrylate (MMA) and butyl acrylate (BA) with hyperbranched architecture. The copolymers were synthesized using a free radical polymerization (Strathclyde method) in emulsion technique. Divinyl benzene was used as the brancher which acted as a comonomer and 1‐dodecanethiol was used as a chain terminating agent. A linear copolymer from MMA and BA was also synthesized for comparison. The hyperbranched architecture was established from spectroscopic and rheological measurements. The gel permeation chromatography showed all hyperbranched copolymers were low molecular weight with lower polydispersity index (PDI) ( 23,000, PDI ~ 2.00) compared to the linear grade ( 93,000, PDI ~ 2.20). They were more spherical and achieved lower viscosity (yet higher solubility, >90%) than the linear grade (<50%) which was mostly open ended. Lower viscosity at equivalent solid content made the hyperbranched polymers a potential binder for adhesive and coating application. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45356.  相似文献   

17.
Thermomolecular mechanisms associated with the synthesis of polymethacrylate monoliths are critical in controlling the physicochemical and binding characteristics of the adsorbent. Notwithstanding, there has been limited reported work on probing the underlining synthesis mechanism essential in establishing the relationship between in‐process polymerization characteristics and the physicochemical properties of the monolith for tailored applications. In this article, we present a real‐time thermochemical analysis of polymethacrylate monolith synthesis by free‐radical polymerization to probe the effects on the physicochemical characteristics of the adsorbent. The experimental results show that an increase in the crosslinker monomer concentration from 30 to 70% resulted in a peak temperature increase from 96.3 to 114.3 °C. Also, an increase in the initiator (benzoyl peroxide) concentration from 1 to 3% w/v resulted in a temperature increase from 90.7 to 106.3 °C. A temperature buildup increases the kinetic rate of intermolecular collision associated with microglobular formation and interglobular interactions. This reduces the structural homogeneity and macroporosity of the polymer matrix. A two‐phase reactive crystallization model was used to characterize the rate of monomeric reaction after initiation and microglobular formation from the liquid monomeric phase to formulate the theoretical framework essential for evaluating the kinetics of the polymer formation process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43507.  相似文献   

18.
A triblock copolymer, containing a polyethylene glycol (PEG) block and two symmetrical poly(2‐(dimethylamino)ethyl methacrylate) (PDM) blocks, was synthesized by using PEG‐based macroinitiator with copper‐mediated living radical polymerization. The conductivity tests showed that the copolymer exhibited switchable responsiveness to CO2, i.e., a relatively high conductivity of solution can be switched on and off by bubbling and removing of CO2. According to the nuclear magnetic resonance results, the CO2‐switchable conductivity variation could be attributed to protonation and deprotonation of tertiary amine groups in PDM blocks. Moreover, at a proper weight concentration 0.5%, the copolymer aqueous solution displayed a CO2‐switchable viscosity variation. Scanning electron microscopy, cryogenic transmission electron microscopy, and dynamic light scattering characterization jointly demonstrated that the viscosity variation was the result of a CO2‐switchable vesicle‐network aggregate structure transition. This structure transition can actually be attributed to a hairpin‐line molecular configuration conversion in terms of the reasonable mechanism discussion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44417.  相似文献   

19.
The bioplastic poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), was isolated from a bioreactor using mixed microbial consortia fed volatile fatty acids (VFA), from fermented dairy manure, as the carbon source. The molar fraction of 3‐hydroxyvalerate (3HV) amounted to 0.33 mol mol?1 for two isolated PHBV samples as determined by GC‐MS and 1H‐NMR spectroscopy. The chemical, thermal, and mechanical properties were determined. The PHBVs had relatively high Mw (~790,000 g mol?1). Only a single glass transition temperature (Tg) and melting point (Tm) were observed. Isolated PHBVs exhibited good flexibility and elongation to break as compared with commercial PHBVs with lower HV. The diad and triad sequence distributions of the monomeric units were determined by 13C‐NMR spectroscopy and followed Bernoullian statistics suggesting that the PHBVs were random. The PHBV sequence distribution was also characterized by electrospray ionization‐mass spectrometry (ESI‐MSn) after partial alkaline hydrolysis to oligomers showing a random 3HV distribution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40333.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号