首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of quadruple responsive copolymers, poly(ethylene glycol)‐ss‐[poly(dimethylaminoethyl methacrylate)‐co‐poly(2‐nitrobenzyl methacrylate)] [PEG‐ss‐(PDMAEMA‐co‐PNBM)], were synthesized via atom transfer radical polymerization mediated by home‐made PEG‐based macro‐initiator labeled with disulfides. The obtained copolymers could self‐assemble in aqueous solution forming micelles with the disulfide bridge linking the hydrophilic coronas (PEG) and the hydrophobic cores (PDMAEMA‐co‐PNBM). Investigation on the resulted micelles indicated that the micelles could respond to various stimuli, that is, temperature, pH, the presence of dithiothreitol (DTT), and UV irradiation. Moreover, the responsive behavior of the micelles depends on the type of stimuli, that is, temperature change causes size change of the micelles, while UV irradiation leads to dissolution of the self‐assembled structures. Such stimulus‐dependent responsive behavior could be applied in smart materials that deal with multi‐tasks or in the construction of complex logic gate. The potential application of the multi‐responsive micelles in cargo release system was also evaluated using Nile Red (NR) as model molecule. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46675.  相似文献   

2.
Temperature, pH, and reduction triple‐stimuli‐responsive inner‐layer crosslinked micelles as nanocarriers for drug delivery and release are designed. The well‐defined tetrablock copolymer poly(polyethylene glycol methacrylate)–poly[2‐(dimethylamino) ethyl methacrylate]–poly(N‐isopropylacrylamide)–poly(methylacrylic acid) (PPEGMA‐PDMAEMA‐PNIPAM‐PMAA) is synthesized via atom transfer radical polymerization, click chemistry, and esterolysis reaction. The tetrablock copolymer self‐assembles into noncrosslinked micelles in acidic aqueous solution. The core‐crosslinked micelles, shell‐crosslinked micelles, and shell–core dilayer‐crosslinked micelles are prepared via quaternization reaction or carbodiimide chemistry reaction. The crosslinked micelles are used as drug carriers to load doxorubicin (DOX), and the drug encapsulation efficiency with 20% feed ratio reached 59.2%, 73.1%, and 86.1%, respectively. The cumulative release rate of DOX is accelerated by single or combined stimulations. The MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay verifies that the inner‐layer crosslinked micelles show excellent cytocompatibility, and DOX‐loaded micelles exhibit significantly higher inhibition for HepG2 cell proliferation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46714.  相似文献   

3.
BACKGROUND: Chitosan is a polymer with good biocompatibility which makes it promising for potential applications in the field of drug delivery. A novel kind of copolymer, P(CS‐Ma‐graft‐NIPAm), was synthesized with chitosan (CS), maleic anhydride (Ma) and N‐isopropylacrylamide (NIPAm) by grafting and copolymerization. RESULTS: The copolymers were characterized using Fourier transform infrared, 1H NMR and ultraviolet spectroscopies, and the molecular weight and polydispersity were determined using gel permeation chromatography. The aqueous solution properties of the copolymer and the controlled delivery of coenzyme A from it were also studied. The results showed that the copolymer had temperature and pH sensitivities, and that the release of coenzyme A from the copolymer was dependent on the release medium, namely the concentration of the copolymer, pH and temperature. Higher concentrations of the copolymer absorbed more coenzyme A than lower ones. Increasing temperature accelerated coenzyme A release from the copolymer. Also, the pH of the solution had a significant impact on the release of coenzyme A. CONCLUSION: These results suggest that the novel copolymer could be used in drug delivery systems. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
Thermoresponsive amphiphilic copolymer, poly[N‐isopropyl acrylamide‐co‐3‐(trimethoxysilyl)propylmethacrylate]‐b‐poly{N‐[3‐(dimethylamino)propyl]methacrylamide} with a branched structure was designed and synthesized by consecutive reversible addition–fragmentation chain‐transfer polymerization. The further hydrolysis of trimethoxysilyl functions in 3‐(trimethoxysilyl) propyl methacrylate units led to the fabrication of core‐crosslinked (CCL) micelles with silica crosslinks at temperatures above the lower critical solution temperature of the poly(N‐isopropyl acrylamide) block. The thermally induced structural and morphological changes of the CCL micelles in aqueous solution were investigated by transmission electron microscopy and 1H‐NMR analyses. The resulting CCL micelles were further explored as nanocarriers for the codelivery of an anticancer drug and nucleic acid for enhanced therapeutic efficacy. The CCL micelles effectively condensed the nucleic acid and mediated higher gene transfer in the presence of serum than in serum‐free transduction. A cytotoxicity study revealed that whereas the pure CCL micelles exhibited unapparent cytotoxicity, the codelivery of p53 and doxorubicin with the CCL micelle formulation resulted in better treatment efficiency than sole chemotherapy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41752.  相似文献   

5.
Doxorubicin (DOX) is a widely used chemotherapeutic drug for the treatment of several types of cancers, which has limitation in clinical applications because of severe heart toxicity. Herein, to reduce the fast clearance from the blood system and the severe systemic toxicity caused by the nonspecific protein adsorption, a pH‐sensitive drug delivery system with higher drug conjugated content was prepared by conjugating DOX onto hydroxyethyl starch (HES) with a pH‐sensitive hydrazone bond. In normal physiological environment, the release of DOX conjugated onto HES was slight which could be neglected without any side effect. However, in an acidic environment mimicking the tumor microenvironment, this pH‐sensitive hydrazone linkage provided a controlled and sustained release of DOX over a period of more than 3 days. The conjugates had good biocompatibility, long circulation, and lower cytotoxicity, which could efficiently be transferred into HeLa and HepG2 cells and release the conjugated drug. Based on these promising properties, these HES–DOX conjugates outline the significant potential for future biomedical application in the controlled release of antitumor drugs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42778.  相似文献   

6.
Thermoresponsive poly(N‐isopropyl acrylamide) (PNIPAM)‐block‐hydroxy‐terminated polybutadine‐block‐PNIPAM triblock copolymers were synthesized by atom transfer radical polymerization; this was followed by the in situ epoxidation reaction of peracetic acid. The copolymers were characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography measurements, and their physicochemical properties in aqueous solution were investigated by surface tension measurement, fluorescent spectrometry, ultraviolet–visible transmittance, transmission electron microscopy observations, dynamic light scattering, and so on. The experimental results indicate that the epoxidized copolymer micelle aggregates retained a spherical core–shell micelle structure similar to the control sample. However, they possessed a decreased critical aggregate concentration (CAC), increased hydrodynamic diameters, and a high aggregation number and cloud point because of the incorporation of epoxy groups and so on. In particular, the epoxidized copolymer micelles assumed an improved loading capacity and entrapment efficiency of the drug, a preferable drug‐release profiles without an initial burst release, and a low cytotoxicity. Therefore, they were more suitable for the loading and delivery of the hydrophobic drug as a controlled release drug carrier. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41877.  相似文献   

7.
A series of pH‐temperature dual stimuli‐responsive random copolymers poly[N,N‐dimethylaminoethyl methacrylate‐co‐poly(poly(ethylene glycol) methyl ether methacrylate][poly(DMAEMA‐co‐MPEGMA)] were synthesized by free radical polymerization. The supramolecular hydrogel was formed by pseudopolyrotaxane, which was prepared with the host‐guest interactions between α‐cyclodextrin (α‐CD) and poly(ethylene glycol) (PEG) side chains. Fourier transform infrared (FT‐IR), nuclear magnetic resonance (1H NMR), and X‐ray diffraction (XRD) confirmed the structures of the hydrogels. The pH‐temperature dual stimuli responsive properties of the hydrogels were characterized by rheometer. Finally, the controllable drug release behavior of the hydrogel, which was used 5‐fluorouracil (5‐Fu) as the model drug, was investigated at different temperatures and different pH values. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43279.  相似文献   

8.
In this article, a temperature‐ and pH‐responsive delivery system based on block‐copolymer‐capped mesoporous silica nanoparticles (MSNs) is presented. A poly[2‐(diethylamino)ethyl methacrylate)] (PDEAEMA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAM) shell on MSNs was obtained through the surface‐initiated atom transfer radical polymerization. The block copolymer PDEAEMA‐b‐PNIPAM showed both temperature‐ and pH‐responsive properties. The release of the loaded model molecules from PDEAEMA‐b‐PNIPAM‐coated MSNs could be controlled by changes in the temperature or pH value of the medium. The as‐desired drug‐delivery carrier may be applied to biological systems in the future. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42395.  相似文献   

9.
A series of thermoresponsive triblock copolymers, methoxy poly(ethylene oxide)‐b‐poly(ε‐caprolactone)‐b‐poly(N‐isopropylacrylamide) (mPEO‐b‐PCL‐b‐PNIPAM), with different PCL and PNIPAM block lengths, were synthesized by a combination of ring opening polymerization and reversible addition‐fragmentation chain transfer polymerization techniques. The triblock copolymers undergo self‐assembly in aqueous solutions forming stable nanovesicles of various sizes with a lipid membrane structure similar to body cells as revealed by transmission electron microscopy. The nanovesicle is thermoresponsive, that is, its size is tunable using the temperature as a switch: shrinks at a temperature above the lower critical solution temperature (LCST) and expands at a temperature below the LCST. The corresponding LCST of the triblock copolymers is adjustable by varying the PNIAM segment length as well as the PCL segment length and covers a range from 33.9 to 41.0°C in water. The diameter of nanovesicles for mPEO3kb‐PCL5kb‐PNIPAM13.2k is about 177.7 nm below the LCST and 138.9 nm above the LCST, as determined by dynamic light scattering. It was demonstrated using indomethacin, a popular anti‐inflammation medicine, that the triblock copolymers can effectively act as a drug release carrier under the right human physiological conditions, that is, store the drug at a lower temperature and release it at a higher temperature, possibly targeting at the lesion sites of human body. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41361.  相似文献   

10.
Scientists are searching potential solutions for cancer treatments as well as ways to avoid the side effects of anti‐cancer agents, via targeted drug delivery. The aim of this research is to propose dual responsive beads based on sodium alginate (SA), methylcellulose (MC), and magnetic iron oxide nanoparticles (MIONs) for controlled release of 5‐Fluorouracil (5‐FU) as model drug. The beads were prepared by the dual crosslinking of SA and MC in the presence of MIONs. The structural, thermal, morphological, magnetic characteristics as well as the release profile of 5‐FU were studied. The characterization results showed that the drug molecules and MIONs were well dispersed in the polymeric matrix. The cumulative release percentage was ca. 80% at pH = 4.2 and 40% at pH = 7.2 after 6 h. Thus, the sensitivity of beads on the pH value was verified. Moreover, the release profile exhibited reduction with an increase in the concentration of MIONs under an external magnetic field. The obtained results confirmed the dual sensitive release of 5‐FU (i.e., PH/magnetic) that can be used for the targeted and controlled drug delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45143.  相似文献   

11.
Polyurethane (PU)/poly[2‐(diethylamino)ethyl methacrylate] hybrids, having a chemical bond between the PU and acrylic moieties and with different compositions, were prepared by the dispersion polymerization of 2‐(diethylamino)ethyl methacrylate (DEA) in the presence of preformed PU chains with polymerizable terminal vinyl groups. The PU dispersion was synthesized according to a prepolymer mixing process by the polyaddition of isophorone diisocyanate, poly(propylene glycol), 2‐hydroxyethyl methacrylate, and dimethylol propionic acid (DMPA). Then, it was dispersed in water by the prior neutralization of the carboxylic acid groups of DMPA with triethylamine, chain‐extended with ethylenediamine. The effect of the DEA content on the swelling properties (water uptake and dynamic swelling degree) at different pHs and at 37°C was determined. The samples were also characterized by Fourier transform infrared spectroscopy and modulated differential scanning calorimetry. The experimental results indicate a higher water uptake when the DEA content was increased on the hybrid materials and a significant change in the kinetics of swelling at pH 4 compared to those at pH 7. The water content of the hydrogels depended on the DEA content, and it was inversely proportional to the pH value. The pure PU film did not show important changes over the pH range examined in this study. The synthesized hybrids were useful as drug‐delivery, pH‐sensitive matrices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39799.  相似文献   

12.
Two series of pH‐sensitive semi‐interpenetrating network hydrogels (semi‐IPN) based on chitosan (CS) natural polymer and acrylamide (AAm) and/or N‐hydroxymethyl acrylamide (HMA) monomers by varying the monomer and CS ratios were synthesized by free radical chain polymerization. 5‐Fluorouracil (5‐FU), a model anticancer drug, has been added to the feed composition before the polymerization. The characterization of gels indicated that the drug is molecularly dispersed in the polymer matrix. The swelling kinetics of drug‐loaded gels have decreased with increased HMA content at 37°C in both distilled water and buffer solutions with a pH of 2.1 or 7.4. Elastic modulus of the gels increased with the increase in HMA content and higher CS concentration enhanced the elastic modulus positively. Moreover, cumulative release percentages of the gels for 5‐FU were ca. 10% higher in pH 2.1 than those in pH 7.4 media. It was determined that they can be suitable for the use in both gastric and colon environments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41886.  相似文献   

13.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

14.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
In this study, hollow calcium–alginate/poly(acrylic acid) (PAA) hydrogel beads were prepared by UV polymerization for use as drug carriers. The hollow structure of the beads was fortified by the incorporation of PAA. The beads exhibited different swelling ratios when immersed in media at different pH values; this demonstrated that the prepared hydrogel beads were pH sensitive. A small amount (<9%) of vancomycin that had been incorporated into the beads was released in simulated gastric fluid, whereas a large amount (≤67%) was released in a sustained manner in simulated intestinal fluid. The observed drug‐release profiles demonstrated that the prepared hydrogel beads are ideal candidate carriers for vancomycin delivery into the gastrointestinal tract. Furthermore, the biological response of cells to these hydrogel beads indicated that they exhibited good biological safety and may have additional applications in tissue engineering. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Chemically crosslinked hydrogels composed of carbohydrate‐based and thermoresponsive monomers, sucrose 1‐O′‐methacrylate (SMA), sucrose dimethacrylate, and N‐isopropylacrylamide, respectively, were synthesized by free radical polymerization. These materials were characterized with respect to their composition, thermoresponsiveness, porosity, degradability, and as drug and protein delivery systems. Swelling studies, thermomechanical analysis, and differential scanning calorimetry showed that the lower critical solution temperature behavior of the hydrogels can be controlled by the SMA amount in the copolymers. On the other hand, thermoporometry showed that the pore size is somewhat dependent on the composition, which is confirmed by scanning electron microscopy. Hydrolytic degradation studies indicated that SMA side chains, as well as the crosslinker (sucrose dimethacrylate), are hydrolysable at corporeal temperature and pH 10, and the water swelling capability of the resulting materials increases as the hydrolysis degree increases. Finally, protein delivery studies revealed that the kinetics of release can be tailored by the copolymer composition. The results of this study suggest the potential application of these hydrogels in drug delivery systems and tissue engineering. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45495.  相似文献   

17.
A novel dual‐responsive (light and pH) particle based on poly(methacrylic acid), poly(methacrylic acid)–poly[1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate)]was prepared with the facile method of two‐step homogeneous radical polymerization with methacrylic acid as the monomer and 1‐(2‐nitrophenyl)ethane‐1,2‐diyl bis(2‐methylacrylate) as a photodegradable crosslinker. Photolytic assessments were conducted upon irradiation with a UV lamp; this led to particle disintegration caused by cleavage of the photolabile crosslinking points. The light‐dependent degradation was investigated through particle size changes, absorption spectra variations, surface morphology changes, Fourier transform infrared spectroscopy, and the release of Nile red from the particles after irradiation. The pH dependence of the particle systems induced by the protonation and deprotonation of poly(methacrylic acid) was also confirmed by fluorescence spectroscopy. The triggered release of fluorescein diacetate was investigated to demonstrate that the release behavior in cells was light dependent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44003.  相似文献   

18.
In this work, smart hollow microcapsules made of thermal‐/pH‐dual sensitive aliphatic poly(urethane‐amine) (PUA), sodium poly(styrenesulfonate) (PSS), and Au nanoparticles (AuNPs) for interdependent multi‐responsive drug delivery have been constructed by layer‐by‐layer (LbL) technique. The electrostatic interactions among PUA, PSS, and AuNPs contribute to the successful self‐assembly of hollow multilayer microcapsules. Thanks to the shrinkage of PUA above its lower critical solution temperature (LCST) and the interaction variation between PUA and PSS at different pH conditions, hollow microcapsules exhibit distinct pH‐ and thermal‐sensitive properties. Moreover, AuNPs aggregates can effectively convert light to heat upon irradiation with near‐infrared (NIR) laser and endow the hollow microcapsules with distinct NIR‐responsiveness. More importantly, the NIR‐responsive study also demonstrates that the microcapsule morphology and the corresponding NIR‐responsive drug release are strongly dependent on the pH value and temperature of the media. The results indicate that the prepared hollow PUA/PSS/Au microcapsules have the great potential to be used as a novel smart drug carrier for the remotely controllable drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43008.  相似文献   

19.
Chitosan‐graft‐β‐cyclodextrin (CS‐g‐β‐CD) copolymer was synthesized by conjugating β‐cyclodextrins to chitosan molecules through click chemistry. The copolymer structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). CS‐g‐β‐CD/CMC nanoparticles were prepared by a polyelectrolyte complexation process in aqueous solution between CS‐g‐β‐CD copolymer and carboxymethyl chitosan (CMC), which was used to load anticancer drug (Doxorubicin hydrochloride, DOX·HCl) with hydrophobic group. The particle size, surface charge, zeta potential, and morphology of the nanoparticles were characterized with dynamic light scattering. The drug loading efficiency and in vitro release of DOX·HCl of the nanoparticles were measured by ultraviolet spectrophotometer. The results demonstrated that the size, surface charge and drug loading efficiency of the nanoparticles could be modulated by the fabrication conditions. The drug loading efficiency of CS‐g‐β‐CD/CMC nanoparticles was improved from 52.7% to 88.1% because of the presence of β‐CD moieties with hydrophobic cavities, which can form inclusion complexes with the drug molecules. The in vitro release results showed that the CS‐g‐β‐CD/CMC nanoparticles released DOX·HCl in a controlled manner, importantly overcoming the initial burst effect. These nanoparticles possess much potential to be developed as anticancer drug delivery systems, especially those drugs with hydrophobic group. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41034.  相似文献   

20.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号