首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel nanocomposite porous scaffolds based on poly(?-caprolactone) (PCL) and multiwalled carbon nanotubes (MWCNTs) were manufactured by a compression-molding/polymer-leaching approach utilizing cryomilling for homogeneous dispersion of nanotubes and blending of polymers. Addition of MWCNTs to PCL and PCL/polyglycolide (PGA) blends resulted in significant changes to scaffold morphology compared to control samples despite persistent interconnected porosity. Several structures exhibiting rough and nanotextured surfaces were observed. Mean pore sizes were in the range of ~3–5?µm. The nanocomposites presented good mechanical and water uptake properties. The results of this research provide significant insight into a strategy for producing nanocomposite scaffolds with interconnected porosity.  相似文献   

2.
To achieve novel polymer/bioceramic composite scaffolds for use in materials for bone tissue engineering, we prepared organic/inorganic hybrid scaffolds composed of biodegradable poly(ε‐caprolactone) (PCL) and hydroxyapatite (HA), which has excellent biocompatibility with hard tissues and high osteoconductivity and bioactivity. To improve the interactions between the scaffolds and osteoblasts, we focused on surface‐engineered, porous HA/PCL scaffolds that had HA molecules on their surfaces and within them because of the biochemical affinity between the biotin and avidin molecules. The surface modification of HA nanocrystals was performed with two different methods. Using Fourier transform infrared, X‐ray diffraction, and thermogravimetric analysis measurements, we found that surface‐modified HA nanocrystals prepared with an ethylene glycol mediated coupling method showed a higher degree of coupling (%) than those prepared via a direct coupling method. HA/PCL hybrid scaffolds with a well‐controlled porous architecture were fabricated with a gas‐blowing/particle‐leaching process. All HA/PCL scaffold samples exhibited approximately 80–85% porosity. As the HA concentration within the HA/PCL scaffolds increased, the porosity of the HA/PCL scaffolds gradually decreased. The homogeneous immobilization of biotin‐conjugated HA nanocrystals on a three‐dimensional, porous scaffold was observed with confocal microscopy. According to an in vitro cytotoxicity study, all scaffold samples exhibited greater than 80% cell viability, regardless of the HA/PCL composition or preparation method. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
Bioactive nanocomposite of nonstoichiometric apatite (ns‐AP) and poly(ε‐caprolactone) (PCL) was synthesized and its porous scaffold was fabricated. The results show that the hydrophilicity and cell attachment ratio on the composite surface improved with the increase of ns‐AP content in PCL. The composite scaffolds with 60 wt % ns‐AP content contained open and interconnected pores ranging in size from 200 to 500 μm and exhibit a porosity of around 80%. In addition, proliferation of MG63 cells on the composite scaffolds significantly increased with the increase of ns‐AP content, and the level of alkaline phosphatase (ALP) activity and nitric oxide (NO) production of the cells cultured on the composite scaffold were higher than that of PCL at 7 days, revealing that the composite scaffolds had excellent in vitro biocompatibility and bioactivity. The composite scaffolds were implanted into rabbit mandible defects, the results suggest that the introduction of ns‐AP into PCL enhanced the efficiency of new bone formation, and the ns‐AP/PCL composite exhibited in vivo good biocompatibility and osteogenesis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Three dimensional (3D) biodegradable porous scaffolds play a crucial role in bone tissue repair. In this study, four types of 3D polymer/hydroxyapatite (HAp) composite scaffolds were prepared by freeze drying technique in order to mimic the organic/inorganic nature of the bone. Chitosan (CH) and poly(lactic acid‐co‐glycolic acid) (PLGA) were used as the polymeric part and HAp as the inorganic component. Properties of the resultant scaffolds, such as morphology, porosity, degradation, water uptake, mechanical and thermal stabilities were examined. 3D scaffolds having interconnected macroporous structure and 77–89% porosity were produced. The pore diameters were in the range of 6 and 200 µm. PLGA and HAp containing scaffolds had the highest compressive modulus. PLGA maintained the strength by decreasing water uptake but increased the degradation rate. Scaffolds seeded with SaOs‐2 osteoblast cells showed that all scaffolds were capable of encouraging cell adhesion and proliferation. The presence of HAp particles caused an increase in cell number on CH‐HAp scaffolds compared to CH scaffolds, while cell number decreased when PLGA was incorporated in the structure. CH‐PLGA scaffolds showed highest cell number on days 7 and 14 compared to others. Based on the properties such as interconnected porosity, high mechanical strength, and in vitro cell proliferation, blend scaffolds have the potential to be applied in hard tissue treatments. POLYM. COMPOS., 36:1917–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
Poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their films without or blended with 50 wt% poly(ethylene glycol) (PEG) were prepared by solution casting. Porous films were obtained by water‐extraction of PEG from solution‐cast phase‐separated PLLA‐blend‐PCL‐blend‐PEG films. The effects of PLLA/PCL ratio on the morphology of the porous films and the effects of PLLA/PCL ratio and pores on the physical properties and biodegradability of the films were investigated. The pore size of the blend films decreased with increasing PLLA/PCL ratio. Polymer blending and pore formation gave biodegradable PLLA‐blend‐PCL materials with a wide variety of tensile properties with Young's modulus in the range of 0.07–1.4 GPa and elongation at break in the range 3–380%. Pore formation markedly increased the PLLA crystallinity of porous films, except for low PLLA/PCL ratio. Polymer blending as well as pore formation enhanced the enzymatic degradation of biodegradable polyester blends. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
A fibrous scaffold is required to provide three‐dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. In this study, porous scaffolds with different mass ratio of poly(lactic acid) to poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) for tissue engineering were prepared by a modified particle leaching method. The effect of the addition of P(3HB‐co‐4HB) on microstructural morphology, compression property, swelling behavior, and enzymatic degradation of hybrid scaffolds was systematically investigated. The results indicated that this method was simple but efficient to prepare highly interconnected biomimetic 3D hybrid scaffolds (PP50/50 and PP33/67) with fibrous pore walls. The cytocompatibility of hybrid scaffolds was evaluated by in vitro culture of mesenchymal stem cells. The cell‐cultured hybrid scaffolds presented a complete 3D porous structure, thus allowing cell proliferation on the surface and infiltration into the inner part of scaffolds. The obtained hybrid scaffolds with pore size ranging from 200 to 450 µm, over 90% porosity, adjustable biodegradability, and water‐uptake capability will be promising for cartilage tissue engineering applications. POLYM. ENG. SCI., 54:2902–2910, 2014. © 2014 Society of Plastics Engineers  相似文献   

7.
A series of nanocomposite scaffolds of poly(?‐caprolactone) (PCL) and starch with a range of porosity from 50 to 90% were fabricated with a solvent‐casting/salt‐leaching technique, and their physical and mechanical properties were investigated. X‐ray diffraction patterns and Fourier transform infrared spectra confirmed the presence of the characteristic peaks of PCL in the fabricated scaffolds. Microstructure studies of the scaffolds revealed a uniform pore morphology and structure in all of the samples. The experimental measurements showed that the average contact angle of the PCL/starch composite was 88.05 ± 1.77°. All of the samples exhibited compressive stress/strain curves similar to those of polymeric foams. The samples with 50, 60, 70, and 80 wt % salt showed compressive‐load‐resisting capabilities in the range of human cancellous bone. With increasing porosity, a significant decrease in the mechanical properties of the scaffolds was observed. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43523.  相似文献   

8.
Oral chemotherapy is quickly emerging as an appealing option for cancer patients. It is less stressful because the patient has fewer hospital visits and can still maintain a close relationship with health care professionals. Three kinds of nanoparticles made from commercial poly(ε‐caprolactone) (PCL) and self‐synthesized d‐α‐tocopheryl poly(ethylene glycol) 1000 succinate ‐b‐poly(ε‐caprolactone‐ran‐glycolide) [TPGS‐b‐(PCL‐ran‐PGA)] diblock copolymer were prepared in this study for the oral delivery of antitumor agents, including chitosan‐modified PCL nanoparticles, nonmodified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles, and chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles. First, the TPGS‐b‐(PCL‐ran‐PGA) diblock copolymer was synthesized and structurally characterized. Chitosan was adopted to extend the retention time at the cell surface and thus increase the chance of nanoparticle uptake by the gastrointestinal mucosa and improve the absorption of drugs after oral administration. The resulting TPGS‐b‐(PCL‐ran‐PGA) nanoparticles were found to be of spherical shape and around 200 nm in diameter with a narrow size distribution. The surface charge of the TPGS‐b‐(PCL‐ran‐PGA) nanoparticles could be reversed from anionic to cationic after surface modification. The chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles displayed a significantly higher level of cellular uptake compared with the chitosan‐modified PCL nanoparticles and nonmodified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles. In vitro cell viability studies showed the advantages of the chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles over Taxol in terms of their cytotoxicity against human RT112 cells. In summary, the oral delivery of antitumor agents by chitosan‐modified TPGS‐b‐(PCL‐ran‐PGA) nanoparticles produced results that were promising for the treatment of patients with bladder cancer. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2118–2126, 2013  相似文献   

9.
The aim of this study was to prepare poly‐?‐caprolactone (PCL) foams, with a well‐defined micrometric and bimodal open‐pore dimension distribution, suitable as scaffolds for tissue engineering. The porous network pathway was designed without using toxic agents by combining gas foaming (GF) and selective polymer extraction techniques. PCL was melt‐mixed with thermoplastic gelatin (TG) in concentrations ranging from 40 to 60 wt %, to achieve a cocontinuous blend morphology. The blends were subsequently gas foamed by using N2‐CO2 mixtures, with N2 amount ranging from 0 to 80 vol %. Foaming temperature was changed from 38 to 110°C and different pressure drop rates were used. After foaming, TG was removed by soaking in H2O. The effect of blend compositions and GF process parameters on foam morphologies was investigated. Results showed that different combinations of TG weight ratios and GF parameters allowed the modulation of macroporosity fraction, microporosity dimension, and degree of interconnection. By optimizing the process parameters it was possible to tailor the morphologies of highly interconnected PCL scaffolds for tissue engineering. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Enzymatic crosslinking was developed to prepare in situ forming poly(γ‐glutamic acid) (γ‐PGA) based hydrogel in this study. First, the precursor of poly(γ‐glutamic acid)–tyramine (γ‐PGA–Ty) was synthesized through the reaction of carboxyl groups from a γ‐PGA backbone with tyramine. The structure of the grafted precursor was confirmed by 1H‐NMR and Fourier transform infrared spectroscopy. After that, the crosslinking of the phenol‐containing γ‐PGA–Ty precursor was triggered by horseradish peroxidase in the presence of H2O2; this resulted in the formation of the γ‐PGA–Ty hydrogels. The equilibrium water content, morphology, enzymatic degradation rate, and mechanical properties of the hydrogels were characterized in detail. The data revealed that the well‐interconnected hydrogels had tunable water contents, mechanical properties, and degradability through adjustments of the composition. Furthermore, cell experiments proved the biocompatibility of the hydrogels by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. These characteristics provide an opportunity for the in situ formation of injectable biohydrogels as potential candidates in cell encapsulation and drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42301.  相似文献   

11.
Polymeric nanofibers are materials that can be used as scaffolds in tissue engineering. Quercetin and curcumin are antioxidants because of scavenge free radicals and chelate metal ions properties, protecting tissues of lipid peroxidation. The objective of this study was to develop a scaffold with potential antioxidant activity that was produced from nanofibers consisting of polycaprolactone (PCL) and a blend of PCL/poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB‐HV) with the addition of quercetin or curcumin as the bioactive compound. Curcumin and quercetin were integrated into the solution at a concentration of 3%. The electrospun nanofibers were characterized using calorimetry and thermogravimetric analysis, and the addition of bioactive compounds did not alter the thermal properties of the biomaterial. The antioxidant activity of scaffolds with the active compounds was evaluated by hydrate 2,2‐diphenyl‐2‐picrylhydrazyl (DPPH) and 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonic acid) diammonium salt (ABTS) methods. The scaffolds with PCL and PCL/PHB‐HV blend with quercetin exhibited higher antioxidant activity than curcumin with both methods. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43712.  相似文献   

12.
Porous poly(?‐caprolactone) (PCL) films were prepared by water extraction of poly(ethylene oxide) (PEO) from their solution‐cast phase‐separated blend films and the dependence of their blend ratio [XPCL = PCL/(PEO + PCL)] and molecular weight of PEO on the porosity, pore size, crystallinity, crystalline thickness, mechanical properties, morphology, and enzymatic and alkaline hydrolysis of the porous PCL films were investigated. The film porosity or extracted weight ratio was in good agreement with the expected values, irrespective of XPCL and molecular weight of PEO. The maximum pore size was larger for the porous films prepared using PEO having a lower molecular weight, compared with films prepared using PEO having a higher molecular weight at the same XPCL. Differential scanning calorimetry of the porous PCL films revealed that their crystallinity and crystalline thickness were almost constant, regardless of XPCL and molecular weight of PEO. The Young's modulus and tensile strength of the porous films decreased, whereas the elongation‐at‐break increased with decreasing XPCL. The enzymatic and alkaline hydrolysis rates of the porous films increased with a decrease in XPCL and an increase in the molecular weight of PEO. The porous PCL films having Young's modulus in the range of 2–24 kg/mm2 and enzymatic hydrolysis rate in the range of one‐ to 20‐fold that of the nonporous PCL film could be prepared by altering XPCL and the molecular weight of PEO. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2281–2291, 2001  相似文献   

13.
Poly(ε‐caprolactone) (PCL)/silicon‐substituted carbonate apatite (Si‐CO3Ap) composite derived from the interconnected porous Si‐CO3Ap reinforced with molten PCL was prepared. PCL was used to improve the mechanical properties of a porous apatite by a simple polymer infiltration method, in which the molten PCL was deposited through the interconnected channel of porous Si‐CO3Ap. The PCL covered and penetrated into the pores of the Si‐CO3Ap to form an excellent physical interaction with Si‐CO3Ap leading to a significant increase in diametral tensile strength from 0.23 MPa to a maximum of 2.04 MPa. The Si‐CO3Ap/PCL composite has a porosity of about 50–60% and an interconnected porous structure, with pore sizes of 50–150 μm which are necessary for bone tissue formation. These results could pave the way for producing a porous, structured biocomposite which could be used for bone replacement. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
In this study, freezing was used to separate a solute (polymer) and solvent (deionized water). The polymer in the ice crystals was then crosslinked with solvents, and this diminished the linear pores to form a porous structure. Gelatin and chitosan were blended and frozen, after which crosslinking agents were added, and the whole was frozen again and then freeze‐dried to form chitosan/gelatin porous bone scaffolds. Stereomicroscopy, scanning electron microscopy, compressive strength testing, porosity testing, in vitro biocompatibility, and cytotoxicity were used to evaluate the properties of the bone scaffolds. The test results show that both crosslinking agents, glutaraldehyde (GA) and 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide, were able to form a porous structure. In addition, the compressive strength increased as a result of the increased crosslinking time. However, the porosity and cell viability were not correlated with the crosslinking times. The optimal porous and interconnected pore structure occurred when the bone scaffolds were crosslinked with GA for 20 min. It was proven that crosslinking the frozen polymers successfully resulted in a division of the linear pores, and this resulted in interconnected multiple pores and a compressively strong structure. The 48‐h cytotoxicity did not affect the cell viability. This study successfully produced chitosan/gelatin porous materials for biomaterials application. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41851.  相似文献   

15.
Polycaprolactone (PCL) blend with poly(hydroxybutyrate) (PHB) or poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) dual‐leached scaffolds are prepared by using the solvent casting and salt–polymer‐leaching technique. The blending of the PHB and PHBV in PCL scaffolds results in decreased porosities of the scaffolds, and the water absorption capacities of the scaffolds also decrease. The compressive modulus of the PCL–PHB and PCL–PHBV dual‐leached scaffolds is greatly increased by the blending of PHB or PHBV matrix. An indirect cytotoxicity evaluation of all scaffolds with mouse fibroblastic cells (L929) and mouse calvaria‐derived preosteoblastic cell (MC3T3‐E1) indicates that all dual‐leached scaffolds are posed as nontoxic to cells. Both PCL–PHB and PCL–PHBV dual‐leached scaffolds are supported by the attachment of MC3T3‐E1 at significantly higher levels to tissue culture polystyrene plate (TCPS) and are able to support the proliferation of MC3T3‐E1 at higher levels to that cells on TCPS and PCL scaffolds. For mineralization, cells cultured on surfaces of PCL–PHB and PCL–PHBV dual‐leached scaffolds show higher mineral deposition than on TCPS and PCL scaffold.

  相似文献   


16.
A new mini‐deposition system (MDS) was developed to fabricate scaffolds with interconnected pore structures and anatomical geometry for bone tissue engineering. Polycaprolactone/hydroxyapatite (PCL/HA) composites with varying hydroxyapatite (HA) content were adopted to manufacture scaffolds by using MDS with a porosity of 54.6%, a pore size of 716 μm in the xy plane, and 116 μm in the z direction. The water uptake ratio and compressive modulus of PCL/HA composite scaffold increase from 8 to 39% and from 26.5 to 49.8 MPa, respectively, as the HA content increases from 0 to 40%. PCL/HA composite scaffolds have better wettability and mechanical properties than pure PCL scaffold. A PCL/HA composite scaffold for mandible bone repair was successfully fabricated with both interconnected pore structures and anatomical shape to demonstrate the versatility of MDS. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
The specific interactions between several low‐molecular‐weight diamino compounds and poly(ε‐caprolactone) (PCL) have been investigated by FT‐IR. It was found that PCL and 3,3′‐diaminodiphenylmethane (3,3′‐DADPM) interact through strong intermolecular hydrogen bonds in the blend. Thermal and mechanical properties of PCL/3,3′‐DADPM blends were investigated by DSC and tensile measurements, respectively. The glass transition temperature of the blend increases while both the melting point and the elongation‐at‐break of the blend decrease with the increase of 3,3′‐DADPM content. Besides 3,3′‐DADPM, several other low‐molecular‐weight compounds containing two amino groups, such as o‐phenylenediamine or 1,6‐diaminohexane, were also added into PCL and the corresponding blend systems were investigated by FT‐IR and DSC. The effect of the chemical structure of the additives on the properties of PCL is discussed. © 2001 Society of Chemical Industry  相似文献   

18.
Polymer blending is one of the most effective methods for providing new, desirable biocomposites for tissue‐engineering applications. In this study, electrospun poly(L ‐lactide)/poly(ε‐caprolactone) (PLLA/PCL) blend fibrous membranes with defect‐free morphology and uniform diameter were optimally prepared by a 1 : 1 ratio of PLLA/PCL blend under a solution concentration of 10 wt %, an applied voltage of 20 kV, and a tip‐to‐collector distance of 15 cm. The fibrous membranes also showed a porous structure and high ductility. Because of the rapid solidification of polymer solution during electrospinning, the crystallinity of electrospun PLLA/PCL blend fibers was much lower than that of the PLLA/PCL blend cast film. To obtain an initial understanding of biocompatibility, adipose‐derived stem cells (ADSCs) were used as seed cells to assess the cellular response, including morphology, proliferation, viability, attachment, and multilineage differentiation on the PLLA/PCL blend fibrous scaffold. Because of the good biocompatibility and nontoxic effect on ADSCs, the PLLA/PCL blend electrospun fibrous membrane provided a high‐performance scaffold for feasible application in tissue engineering using ADSCs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The poly(ε‐caprolactone) (PCL)/starch blends were prepared with a coextruder by using the starch grafted PLLA copolymer (St‐g‐PLLA) as compatibilizers. The thermal, mechanical, thermo‐mechanical, and morphological characterizations were performed to show the better performance of these blends compared with the virgin PCL/starch blend without the compatibilizer. Interfacial adhesion between PCL matrix and starch dispersion phases dominated by the compatibilizing effects of the St‐g‐PLLA copolymers was significantly improved. Mechanical and other physical properties were correlated with the compatibilizing effect of the St‐g‐PLLA copolymer. With the addition of starch acted as rigid filler, the Young's modulus of the PCL/starch blends with or without compatibilizer all increased, and the strength and elongation were decreased compared with pure PCL. Whereas when St‐g‐PLLA added into the blend, starch and PCL, the properties of the blends were improved markedly. The 50/50 composite of PCL/starch compatibilized by 10% St‐g‐PLLA gave a tensile strength of 16.6 MPa and Young's modulus of 996 MPa, respectively, vs. 8.0 MPa and 597 MPa, respectively, for the simple 50/50 blend of PCL/starch. At the same time, the storage modulus of compatibilized blends improved to 2940 MPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In this work, the authors report an effective one‐pot method to prepare poly(ε‐caprolactone) (PCL)‐incorporated bovine serum albumin (BSA)/calcium alginate/hydroxyapatite (HAp) nanocomposite (NC) scaffolds by templating oil‐in‐water high internal phase emulsion (HIPE), which includes alginate, BSA, and HAp in water phase and PCL in oil phase. The water phase of HIPEs is solidified to form hydrogels containing emulsion droplets via gelation of alginate induced by Ca2+ ions released from HAp. And the prepared hydrogels are freeze‐dried to obtain PCL‐incorporated porous scaffolds. The obtained scaffolds possess interconnected pore structures. Increasing PCL concentration clearly enhances the compressive property and BSA stability, decreases the swelling ratio of scaffolds, which assists in improving the scaffold stability. The anti‐inflammatory drug ibuprofen can be highly efficiently loaded into scaffolds and released in a sustained rate. Furthermore, mouse bone mesenchymal stem cells can successfully proliferate on the scaffolds, proving the biocompatibility of scaffolds. All results show that the PCL‐incorporated NC scaffolds possess promising potentials in tissue engineering application.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号