首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IL-10 is an anti-inflammatory cytokine with potent immunomodulatory effects, including inhibition of cytokine production. However, regulation of monocyte IL-10 production is poorly understood. In this report we have investigated the mechanisms of LPS-induced IL-10 production by human peripheral blood monocytes and demonstrate that IL-10 synthesis is uniquely dependent on the endogenous proinflammatory cytokines IL-1 and/or TNF-alpha. LPS signal transduction in monocytes has been shown to involve activation of the p38 and p42 mitogen-activated protein kinase (MAPK) cascades. The results in this paper indicate that inhibition of p38 MAPK potently inhibited the production of IL-10, IL-1beta, and TNF-alpha, whereas blockade of the p42/44 MAPK pathway, while partially inhibiting TNF-alpha and IL-1beta production, had no effect on monocyte secretion of IL-10. Furthermore, neither the inhibition of monocyte TNF-alpha induced by IL-10 nor the stimulation of soluble TNF receptor production was affected by inhibition of the p42/44 MAPK pathway, suggesting that this signaling event is not involved in either monocyte production of or anti-inflammatory responses to IL-10. These data raise the interesting possibility that proinflammatory TNF-alpha-mediated effects may be selectively blocked without modulating the induction or the response to IL-10, whereas the signaling events associated with the anti-inflammatory events induced by IL-10 remain to be elucidated.  相似文献   

3.
Previous studies have shown that the neutrophil-derived heparin-binding protein (HBP), also known as CAP37 or azurocidin, potentiates the LPS-induced release of proinflammatory cytokines (TNF-alpha, IL-1, and IL-6) from isolated human monocytes. To date, the mechanisms by which HBP enhances LPS-induced monocyte activation have not been elucidated, and it is not known whether HBP also increases the LPS-induced production of other bioactive substances. We studied human monocytes activated by recombinant human HBP and LPS and their interaction with the LPS receptor CD14. We hypothesized that the stimulatory effect of HBP on the LPS-induced release of proinflammatory mediators from monocytes was mediated by specific binding of HBP to monocytes, which resulted in an up-regulation of CD14. Our results demonstrated that HBP alone (10 microg/ml) stimulated the production of TNF-alpha from isolated monocytes. In addition, HBP had an additive effect on LPS-induced production of TNF-alpha and PGE2, suggesting a generalized monocyte activation. We used flow cytometry to demonstrate that HBP had a high affinity to monocytes but not to the LPS receptor CD14, and experiments performed at 4 degrees C indicated an energy-dependent step in this process. Confocal microscopy showed that monocytes internalize HBP within 30 min. These data suggest that mechanisms other than increased CD14 expression are responsible for the enhanced release of TNF-alpha or PGE2 in response to HBP and LPS.  相似文献   

4.
Stimulation of human monocytes with LPS induces expression of multiple cytokines, including TNF-alpha, IL-1 beta, IL-6, and IL-10, IL-10 expression is delayed relative to that of TNF-alpha, IL-1 beta, and IL-6. Furthermore, IL-10 feedback inhibits expression of TNF-alpha, IL-1 beta, and IL-6, thus providing an efficient autocrine mechanism for controlling proinflammatory cytokine production in monocytes. The Th1-type lymphokine, IFN-gamma, markedly up-regulates TNF-alpha production in monocytes. However, the precise mechanism by which IFN-gamma mediates this effect is unknown. We examined the effects of IFN-gamma on IL-10 expression in LPS-stimulated monocytes, and the relationship between IL-10 and TNF-alpha production in these cells. LPS stimulation induced rapid, ordered expression of multiple cytokines. Steady-state mRNA levels for TNF-alpha increased rapidly, reached maximal levels by 2 to 3 h poststimulation, and then declined sharply. IL-1 beta and IL-6 mRNA levels also increased markedly following stimulation with LPS, but decreased more slowly than did TNF-alpha. Down-regulation of mRNA for TNF-alpha, IL-1 beta, and IL-6 coincided with a delayed and more gradual increase in IL-10 mRNA levels. Furthermore, neutralization of IL-10 with anti-IL-10 Abs prolonged TNF-alpha mRNA expression, and significantly increased net TNF-alpha production. IFN-gamma suppressed expression of IL-10 mRNA and protein in a dose-dependent manner. Moreover, inhibition of IL-10 production correlated with a marked increase in both the magnitude and duration of TNF-alpha expression. Thus, potentiation of TNF-alpha production by IFN-gamma in monocytes is coupled to inhibition of endogenous IL-10 expression.  相似文献   

5.
6.
7.
Interleukin-8 (IL-8) is a chemokine that belongs to the alpha-chemokine or CXC subfamily and is produced by a wide variety of human cells, including monocytes and polymorphonuclear cells (PMN). IL-8 is secreted in response to inflammatory stimuli, notably bacterial products such as lipopolysaccharide (LPS), but little is known about the mechanisms by which these agents mediate IL-8 induction. In this report, we show that Mycoplasma fermentans lipid-associated membrane proteins (LAMPf) induce the production of high levels of IL-8 by THP-1 (human monocyte) cells and PMN at the same extent as LPS. It was previously demonstrated that stimulation of monocytic cells with either LPS or LAMPf led to a series of common downstream signaling events, including the activation of protein tyrosine kinase and of mitogen-activated protein kinase cascades. By using PD-98059 and SB203580, two potent and selective inhibitors of MEK1 (a kinase upstream of ERK1/2) and p38, respectively, we have demonstrated that both ERK1/2 and p38 cascades play a key role in the production of IL-8 by monocytes and PMN stimulated with bacterial fractions.  相似文献   

8.
Interleukin-10 (IL-10) has been found to inhibit lipopolysaccharide (LPS)-induced tissue factor expression by monocytes in vitro. To determine the effects of IL-10 on LPS-induced activation of the hemostatic mechanisms in vivo, we performed a placebo-controlled, cross-over study of human endotoxemia. Two groups of eight volunteers were challenged with LPS (4 ng/kg) on two occasions: once in conjunction with placebo, and once with recombinant human IL-10 (rhIL-10; 25 microg/kg). In group 1, placebo or rhIL-10 was given 2 minutes before LPS challenge, group 2 received placebo or rhIL-10 1 hour after LPS administration. Pretreatment with rhIL-10 reduced both LPS-induced activation of the fibrinolytic system (plasma concentrations of tissue type plasminogen activator, plasmin-alpha2-antiplasmin complexes, and D-dimer), and inhibition of fibrinolysis (plasma levels of plasminogen activator inhibitor 1), whereas posttreatment only inhibited the latter response. Both IL-10 pre- and posttreatment attenuated activation of the coagulation system (plasma levels of prothrombin fragment F1 + 2 and thrombin-antithrombin complexes). These results indicate that rhIL-10, besides its well-described inhibitory effects on cytokine release, potently modulates the fibrinolytic system and inhibits the coagulant responses during endotoxemia.  相似文献   

9.
10.
IL-12 is important for Th1 differentiation. Myeloid-derived antigen-presenting cells (APC) such as monocytes, macrophages (Mphi) and dendritic cells (DC) are believed to be major sources of IL-12 in vivo. We have compared IL-12 production of fresh monocytes with Mphi differentiated in vitro using macrophage colony-stimulating factor (M-CSF) or human plasma, and in vitro generated dendritic cells, since these differentiated cell types represent APC at sites of antigen challenge. Macrophages stimulated with lipopolysaccharide (LPS) or heat-killed Listeria monocytogenes in the presence or absence of IFN-gamma produced minimal IL-12 p70 by comparison with DC or monocytes, despite comparable production of TNF-alpha. M-CSF-induced Mphi produced low levels of IL-10 constitutively and high levels after stimulation with LPS, but neutralization of IL-10 did not augment Mphi IL-12 production. Exposure of Mphi to TNF-alpha, granulocyte-macrophage CSF or IFN-gamma did not substantially up-regulate IL-12. Therefore M-CSF induces a differentiated Mphi phenotype in which IL-12 production is down-regulated, perhaps irreversibly. This may be the default pathway for monocyte-Mphi development in the absence of inflammation.  相似文献   

11.
12.
We have shown that, in murine J774 macrophages, binding of UTP to pyrimidinoceptors stimulates phosphoinositide (PI) breakdown and an increase in [Ca2+]i. In this study, UTP modulation of the expression of inducible nitric-oxide synthase (iNOS) was investigated. Although UTP alone had no effect, stimulation of J774 cells with a combination of UTP (10-300 microM) and LPS (0.1-3 microgram/ml) resulted in a potentiated increase in nitrite levels. In parallel, the amount of iNOS protein induced by LPS was also potentiated by UTP treatment. The UTP potentiating effect was attenuated by U73122, suggesting involvement of the downstream signaling pathways of phosphatidylinositide turnover. The tyrosine kinase inhibitor genistein inhibited both the LPS-induced nitrite response and the UTP potentiation. Conversely, two protein kinase C inhibitors, Ro 31-8220 and Go 6976, and a phosphatidylcholine-specific phospholipase C inhibitor, D609, inhibited LPS-stimulated nitrite induction, but did not affect the potentiating effect of UTP, which was also unaffected by pretreatment with phorbol 12-myristate 13-acetate for 8 h. Furthermore, the UTP-induced potentiation was abolished by BAPTA/AM or KN-93 (a selective inhibitor of Ca2+/calmodulin-dependent protein kinase (CaMK)). Nitrite potentiation and iNOS induction were prominent when UTP was added simultaneously with LPS, with the potentiating effect being lost when UTP was added 3 h after treatment with LPS. Pyrrolidinedithiocarbamate (3-30 microM), an inhibitor of NF-kappaB, caused a concentration-dependent reduction in the nitrite response to LPS and UTP. In electrophoretic mobility shift assays, LPS produced marked activation of NF-kappaB and AP-1, which was potentiated by UTP. LPS-induced degradation of IkappaB-alpha as well as the phosphorylation of IkappaB-alpha were also increased by UTP. Moreover, the UTP-potentiated activation of NF-kappaB and AP-1 and the degradation and phosphorylation of IkappaB-alpha were inhibited by KN-93. Taken together, these data demonstrate that nucleotides, especially UTP, can potentiate the LPS-induced activation of NF-kappaB and AP-1 and of iNOS induction via a CaMK -dependent pathway and suggest that the UTP-dependent up-regulation of iNOS may constitute a novel element in the inflammatory process.  相似文献   

13.
IL-4 has potent anti-inflammatory properties on monocytes and suppresses both IL-1beta and TNF-alpha production. Well-characterized components of the IL-4 receptor on monocytes include the 140-kDa alpha-chain and the IL-2R gamma-chain, gammac, which normally dimerize 1:1 for signaling from the receptor. However, mRNA levels for gammac were very low in 7-day-cultured monocytes. As mRNA levels for gammac declined with culture, so too did the ability of IL-4 to down-regulate LPS-induced TNF-alpha production. In contrast, IL-4 consistently down-regulated IL-1beta production by cultured monocytes. Immunoprecipitation and Western blot analyses demonstrated that 7-day-cultured monocytes do not express the functionally active 64-kDa gammac protein. This was associated with decreased STAT6 activation by IL-4. Studies with Abs to gammac and an IL-4 mutant that is unable to bind to gammac showed that IL-4 can suppress IL-1beta but not TNF-alpha production by LPS-stimulated monocytes in the presence of little or no functioning gammac. IL-4 also suppressed IL-1beta but not TNF-alpha production by Mono Mac 6 cells, which express minimal levels of gammac. For gammac-expressing LPS/PMA-activated U937 cells, IL-4 decreased both TNF-alpha and IL-1beta production. These results suggest that functional gammac is not present on in vitro-derived macrophages, and that while some anti-inflammatory responses to IL-4 are lost with this down-regulation of functional gammac, others are retained. We conclude that different functional responses to IL-4 by human monocytes and macrophages are regulated by different IL-4 receptor configurations.  相似文献   

14.
15.
Although isoflurane inhibits TNF-alpha and IL-1 beta release from human monocytes stimulated by LPS in dose dependent fashion, it is unclear whether sevoflurane has the same effects. Therefore, we investigated whether sevoflurane could inhibit TNF-alpha and IL-1 beta secretions from human monocytes stimulated by LPS in dose dependent fashion in vitro. Human monocytes stimulated by LPS were cultured for 3 h in the presence of sevoflurane 1% or 5%. Another group of human monocytes were cultured in the absence of sevoflurane. TNF-alpha and IL-1 beta increased after stimulation of LPS and these increases were not inhibited by sevoflurane in a dose dependent fashion. We conclude that sevoflurane does not inhibit TNF-alpha and IL-1 beta release from monocytes stimulated by LPS.  相似文献   

16.
Inflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha), are known to activate sphingomyelinase (SMase) and nuclear factor-kappaB (NF-kappaB) in certain cell types, which also stimulate inducible nitric oxide synthase (iNOS) gene in vascular smooth muscle cells (VSMCs). However, it remains unknown whether the SMase pathway is involved in iNOS gene expression in VSMCs. Therefore, the present study was designed to examine whether SMase induces iNOS gene expression via the NF-kappaB activation pathway similar to that of IL-1beta and TNF alpha in cultured rat VSMCs. Neutral SMase, although less potently than IL-1beta and TNF alpha, stimulated nitrite/nitrate (NOx) production, and iNOS messenger RNA and protein expression, as assessed by Northern and Western blot analyses, respectively. Neutral SMase, IL-1beta, and TNF alpha activated NF-kappaB, as revealed by electrophoretic mobility shift assay, and its nuclear translocation, as demonstrated by immunocytochemical study. Neutral SMase potentiated NOx production, iNOS expression, and NF-kappaB activation stimulated by TNF alpha, but not by IL-1beta. Aldehyde peptide proteasome inhibitors completely blocked NOx production, iNOS expression, NF-kappaB activation, and its nuclear translocation induced by cytokines and neutral SMase. IL-1beta and TNF alpha, but not neutral SMase, caused a transient decrease in IkappaB-alpha protein levels, whereas IkappaB-beta protein expression was not affected by either agent. Proteasome inhibitors prevented cytokine-mediated IkappaB-alpha degradation. Several cell-permeable ceramide analogs (C2, C6, and C8), hydrolysis products of sphingomyelin, activated NF-kappaB less potently than neutral SMase, but had no effect on NOx production. These results demonstrate an essential role of NF-kappaB activation in mediation of neutral SMase-induced iNOS expression, but distinct from the proteasome-mediated IkappaB-alpha degradation by cytokines, suggesting the possible involvement of an additional signaling pathway(s).  相似文献   

17.
OBJECTIVE: To evaluate the effect of gliclazide administration to NIDDM patients on 1) monocyte adhesion to cultured endothelial cells, 2) plasma cytokine and lipid peroxide levels, and 3) monocyte cytokine production. RESEARCH DESIGN AND METHODS: Poorly controlled glyburide-treated diabetic patients (n = 8) and healthy control subjects (n = 8) were recruited. At the beginning of the study, glyburide was replaced by an equivalent hypoglycemic dose of gliclazide. Serum and monocytes were isolated from blood obtained from control and diabetic subjects before and after 3 months of treatment with gliclazide. RESULTS: Plasma lipid peroxide levels and monocyte adhesion to endothelial cells are enhanced in NIDDM patients, and gliclazide administration totally reverses these abnormalities. Before gliclazide treatment, serum levels of cytokines did not differ in the control and the diabetic groups, with the exception of an enhancement of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL)-6 in NIDDM subjects. Basal and lipopolysaccharide (LPS)-stimulated monocyte production of interleukin-1 beta, IL-6, and IL-8 did not differ between the two groups. Furthermore, basal monocyte production of TNF-alpha was similar in the control and the diabetic groups, whereas a marked increase in the LPS-stimulated monocyte production of TNF-alpha was observed in the NIDDM group. Gliclazide treatment lowered LPS-stimulated TNF-alpha production by diabetic monocytes to levels similar to those observed in control subjects. CONCLUSIONS: Gliclazide administration to NIDDM patients inhibits the increased adhesiveness of diabetic monocytes to endothelial cells and reduces the production of TNF-alpha by these cells. These results suggest that treatment of NIDDM subjects with gliclazide may be beneficial in the prevention of atherosclerosis associated with NIDDM.  相似文献   

18.
19.
Active inflammatory bowel disease (IBD) is characterized by increased monocyte secretion of proinflammatory cytokines. Immunoregulatory cytokines such as Interleukin (IL)-4, IL-10, and IL-13 are capable of inhibiting the proinflammatory cytokine response of activated monocytes. The aim of our study was to determine the effect of different antiinflammatory cytokines under various culture conditions and to evaluate combinations of antiinflammatory cytokines in down-regulating monocyte response in IBD. Peripheral monocytes from patients with active IBD were isolated and stimulated with pokeweed mitogen (PWM). IL-4, IL-10, IL-13 and a combination of IL-4/IL-10 and IL-10/IL-13 were added at different concentrations and different times. Secretion of IL-1beta and TNF-alpha was assessed using sandwich ELISA systems. There was a diminished down-regulation of TNF-alpha by IL-4 and IL-13 in IBD when the cytokines were added at the time of stimulation, while there was a significantly higher down-regulation when monocytes were primed with these Th-2 cytokines 24 hr before activation. IL-10 plus IL-4 and IL-10 plus IL-13, respectively, inhibited the proinflammatory cytokine response of monocytes as well as matured macrophages much more than IL-4, IL-10, or IL-13 alone. Even at suboptimal concentrations for each cytokine alone, a combination of cytokines showed synergistic inhibitory effects. In summary, a combination of antiinflammatory cytokines is more effective in down-regulating the response of activated monocytes than using the cytokines alone and thus may have a potential therapeutic benefit for patients with IBD.  相似文献   

20.
Interleukin 4 (IL-4), IL-10 and IL-13 are all known to modulate several proinflammatory functions in human monocytes. They have also previously been shown to down-regulate lipopolysaccharide (LPS)-induced tissue factor (TF) expression in isolated cultured monocytes. In this study we investigated the effect of these three cytokines on the induction of monocytic TF in a whole blood environment at three levels: mRNA quantitation, surface antigen expression and procoagulant activity. We showed that IL-10 attenuated LPS-induced monocyte TF expression and activity in whole blood in a concentration-dependent manner, both when added to the blood prior to LPS and, although to a lesser extent, when added up to 1 h subsequent to LPS challenge. Maximum inhibition occurred at 5 ng/ml of IL-10 when the cytokine was added before LPS. IL-4 and IL-13, however, did not exhibit any inhibitory effect in the whole blood environment, contrary to the reported findings in cell culture experiments. Our results confirm the potential of IL-10 as an anti-inflammatory, TF-preventing drug, whereas the effects of IL-4 and IL-13 on monocytes in whole blood seem more complex, and require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号