首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
扬子石化芳烃联合装置干气回收制氢评述   总被引:1,自引:0,他引:1  
顾伟 《山东化工》2002,31(5):23-26
通过分析制氢装置的原料选择以及芳烃联合装置改造后管网氢气的平衡,阐明利用芳烃干气进变压吸附装置进行提纯氢气,可降低制氢装置氢气生产成本,从而提高制氢装置经济效益。  相似文献   

2.
在炼油厂的炼油与石化装置的生产过程中,容易产生很多富氢尾气。对尾气中氢气的回收,是全球石油化工相关科技人员的研究执点。当前对炼油厂与石化装置尾气中氢气的回收,主要采用PSA(变压吸附)法、膜分离法与深冷分离等方法,其中以PAS法更具优势与特点。以中国石化海南炼油化工有限公司(海南炼化厂)工业尾气综合利用技术研究项目为例,首先对变压吸附技术应用回收氢气的可行性进行分析;然后对回收流程与装置标定进行详细论述。最后得出结论:使用变压吸附技术能够提升氢气的利用率,回收率达到94.7%,且没有污染,同时PSA装置运行较好,产品能够满足对下游装置氢气的需求。  相似文献   

3.
针对陕西陕化煤化工集团有限公司100 kt/a 1,4-丁二醇项目变压吸附提氢装置运行过程中存在的原料气消耗较高、解吸气量较大、产品氢收率低等问题,分析影响变压吸附提氢装置氢收率的主要因素,通过采取降低原料氢气混合气中CO、CO_2与其他杂质含量和延长吸附时间等工艺优化调整措施,以及在变压吸附提氢装置下游新增尾气压缩装置回收变压吸附提氢装置解吸气等优化改造措施后,实现了变压吸附提氢装置氢收率的提升,确保了变压吸附提氢装置的高效、稳定、经济运行。  相似文献   

4.
介绍了电石法PVC生产过程中氯乙烯精馏尾气变压吸附装置以及氢气回用装置的技术改造。改造后,精馏尾气实现了达标排放,氢气可以稳定地回收使用。  相似文献   

5.
介绍了煤直接液化加氢工艺的氢气需求和为提高氢气利用率所采取的措施。该工艺采用两套煤气化制氢、一套天然气制氢和一套重整装置制氢为煤炭液化和液化油品加氢等提供所需的氢气。煤直接液化装置采用膜分离系统将循环氢中的氢气含量从86%提高到96%。同时,采用变压吸附装置(PSA)回收煤直接液化加氢工艺的富氢排放气中的氢气。因膜分离系统受原料制约,其使用效率随运行周期逐渐降低,致使氢气回收率下降、尾气中氢气含量逐渐升高,即降低了膜分离效率,又增加了后续PSA运行能耗;各工段塔顶气经过轻烃回收后所产干气含氢量在49~61%之间,氢气没有得到有效回收利用,直接进入燃料气管网用于燃烧加热,造成了氢气的浪费。因此膜分离系统进行优化配置、干气系统进行氢气回收,对提高煤直接液化加氢工艺的氢气利用率及整个工艺过程的节能降耗具有重要意义。  相似文献   

6.
氯乙烯精馏尾气经变压吸附回收氯乙烯、乙炔后,排空的尾气中含有大量氢气。通过变压吸附技术对富氢气体进行回收,使净化后的气体达标排放,降低消耗,减少环境污染。  相似文献   

7.
介绍了氯乙烯尾气净化气变压吸附提氢装置的生产原理、工艺流程及注意事项。内蒙古君正化工有限责任公司5.5万t/aPVC生产系统安装提氢装置后,氢气回收量3.71kg/h,消耗液氯131.7kg/h。解决了生产系统中氯氢气平衡的瓶颈问题,环境效益和经济效益显著。  相似文献   

8.
王乐  王发有  陈理 《化工中间体》2023,(22):158-160
本文介绍了合成气制乙二醇项目尾气回收系统中的变压吸附脱碳提氢装置及工艺流程,针对该装置初期运行过程中出现的变换气组成偏差、产氢量不足等问题,通过优化调整变压吸附提氢工艺运行时序及配套程控阀管线、解吸气二次回收等技改措施,使得氢气产量和综合收率均优于原设计值,技改成效显著,有力保障了下游乙二醇产品生产。  相似文献   

9.
一、回收氢气装置概述我厂为了降低合成氨能耗,将合成氨弛放气中带出的氢气回收到生产系统中去或生产纯氢,在合成塔后配置了一套由西南化工研究院研制设计的氢回收装置-变压吸附回收氢气装置。该装置的工艺流程见图1。  相似文献   

10.
通过变压吸附装置处理氯乙烯精馏尾气,可以达到回收尾气中氯乙烯及净化提纯尾气净化气中氢气的目的,从而使净化后的气体达标排放,降低消耗,减少环境污染。  相似文献   

11.
王爱平 《广州化工》2010,38(4):195-201
阐述了变压吸附分离制氢技术的现状及其发展的可行性和必要性,阐明了吸附和变压吸附的工作原理,描述了50000Nm^3/h变压吸附分离制氢装置的工艺原理和技术特性。通过该装置原始开车和运行过程的分析研究,推算并找出了本装置H2回收率关系式,同时分析了影响H2回收率的各关键参数。  相似文献   

12.
介绍了变压吸附(PSA)技术在回收电石法聚氯乙烯生产过程的精馏尾气中氢气的原理及应用,阐述了变压吸附技术的工艺流程及其分离原理,分析了采用此技术后的环境和经济效益。  相似文献   

13.
The performance of pressure swing adsorption (PSA), membrane separation, and gas absorption systems for H2 recovery from refinery off‐gas stream was studied by simulation‐based data. The PSA process was simulated using adsorbents of silica gel and activated carbon for removing heavy and light hydrocarbons. The mole fraction profiles of all components and the relationship between hydrogen purity and recovery as a function of feed pressure were examined. The solution‐diffusion model was applied for modeling and simulation of a one‐stage membrane process. The gas absorption process with a tower tray was simulated at sub‐zero temperature and the correlation between hydrogen purity and recovery as a function of tower pressure and temperature was evaluated at different solvent flow rates.  相似文献   

14.
师天林  李一鸣 《化肥工业》2009,36(6):15-16,39
介绍了采用改良变压吸附技术对现有变压吸附(PSA)制氢装置扩能改造的情况。通过改造,装置性能得到了提升,原料气处理能力由16000m^3/h(标态)提高至25000m^3/h(标态),H2收率提高了约4%,满足了公司用氢要求。本次改造投资较少,工期较短,为公司创造了很好的经济效益。  相似文献   

15.
Methane steam reforming is the main hydrogen production method in the industry. The product of methane steam reforming contains H_2, CH_4, CO and CO_2 and is then purified by pressure swing adsorption(PSA) technology. In this study, a layered two-bed PSA process was designed theoretically to purify H_2 from methane steam reforming off gas. The effects of adsorption pressure, adsorption time and purgeto-feed ratio(P/F ratio) on process performance were investigated to design a PSA process with more than99.95% purity and 80% recovery. Since the feed composition of the PSA process changes with the upstream process, the effect of the feed composition on the process performance was discussed as well.The result showed that the increase of CH_4 concentration, which was the weakest adsorbate, would have a negative impact on product purity.  相似文献   

16.
本文探讨了中国神马集团尼龙66盐公司制氢装置的变压吸附气体分离的机理,通过试验,找出了运行方式与回收率的关系以及吸附压力、真空度、吸附时间对产品氢纯度的影响,确定了对产品氢的纯度和收率起主要作用的工艺参数,并选定了合适的操作条件,使得产品氢纯度达到了99.9%以上,产品氢的收率增至85%以上。  相似文献   

17.
廖家势  赵庆雯 《化工进展》2014,33(6):1624-1627
根据燃料气系统运行现状,提出了两个燃料气系统优化方案,以解决目前燃料气系统无法完全满足下游生产装置需要、排放量过大的问题,达到减少燃料气排放、提高能源利用率、降低企业运行成本的目的。并对两个优化方案进行物料衡算和经济效益核算,分别验证两个方案的可行性和经济性。通过对比两种方案,得出方案一(对现有燃料气管网进行改造,将含烯烃、甲醇较多的燃料气单独送至动力装置,并对现有PSA氢回收装置进行扩能改造,使回收气量达23778.4m3/h)优于方案二(维持PSA氢回收装置目前运行状态,增加一套尾气回收装置回收甲醇弛放气中的CO、H2,使燃料气系统达到物料平衡)。方案一具有可行性高、投资小、操作维护方便、经济效益高的优点,是两种优化方案中的最佳选择。  相似文献   

18.
Although the super cold separator applied to the system for CO2 recovery from flue gas can produce pure CO2 liquid, the CO2 recovery efficiency is low. Therefore, the addition of a PSA plant was considered for the secondary CO2 recovery from the noncon‐densing gas to improve the efficiency. The PSA plant was operated for adsorption at the same pressure as that of the super cold separator and for desorption at the atmospheric pressure. From both the simulation and the experimental data, it was confirmed that CO2 could be concentrated from 50% in the noncondensing gas to 70% in the recovery gas by the PSA plant and the CO2 recovery efficiency of the plant was about 90%.  相似文献   

19.
工业氦气主要通过深冷、膜分离和变压吸附(PSA)耦合从天然气提取,其中PSA是获得高纯He的关键。吸附过程模拟可以克服实验局限,有效指导工程设计、优化工艺条件。以体积分数90%的粗He为原料,利用Aspen Adsorption软件建立He/CH4 单塔PSA模型,获得穿透曲线。以此为基础,建立双塔分离流程,分析吸附、顺放、逆放、冲洗、升压步骤中吸附塔内气相组成的变化,五步最佳操作时间分别为 60、180、30、60和180 s。在三塔流程中,一个循环周期的最佳吸附时间和均压时间分别为135 s和90 s,产品纯度可达98.42%,回收率达60.45%。在五塔流程中,考虑到各步骤时间的匹配及生产的连续性,需要对一个周期内的循环时间进行优化。循环时间为300~340 s时,产品纯度达到99.07%以上。  相似文献   

20.
Hydrogen recovery from Tehran refinery off-gas was studied using simulation of PSA (pressure swing adsorption), gas absorption processes and modeling as well as simulation of polymeric membrane process. Simulation of PSA process resulted in a product with purity of 0.994 and recovery of 0.789. In this process, mole fraction profiles of all components along the adsorption bed were investigated. Furthermore, the effect of adsorption pressure on hydrogen recovery and purity was examined. By simulation of one-stage membrane process using co-current model, a hydrogen purity of 0.983 and recovery of 0.95 were obtained for stage cut of 0.7. Also, flow rates and mole fractions were investigated both in permeate and retentate. Then, effects of pressure ratio and membrane area on product purity and recovery were studied. In the simulation of the gas absorption process, gasoline was used as a solvent and product with hydrogen purity of 0.95 and recovery of 0.942 was obtained. Also, the effects of solvent flow rate, absorption temperature, and pressure on product purity and recovery were studied. Finally, these three processes were compared economically. The results showed that the PSA process with total cost of US$ 1.29 per 1 kg recovered H2 is more economical than the other two processes (feed flow rate of 115.99 kmol/h with H2 purity of 72.4 mol%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号