首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report we examine biochemical and genetic alterations in DNA topoisomerase II (topoisomerase II) in K562 cells selected for resistance in the presence of etoposide (VP-16). Previously, we have demonstrated that the 30-fold VP-16-resistant K/VP.5 cell line exhibits decreased stability of drug-induced topoisomerase II/DNA covalent complexes, requires greater ATP concentrations to stimulate VP-16-induced topoisomerase II/DNA complex formation, and contains reduced mRNA and protein levels of the M(r) 170,000 isoform of topoisomerase II, compared with parental K562 cells. K/VP.5 cells grown in the absence of VP-16 for 2 years maintained resistance to VP-16, decreased levels of topoisomerase II, and attenuated ATP stimulation of VP-16-induced topoisomerase II/DNA binding, compared with K562 cells. Sequencing of cDNA coding for two consensus ATP binding sites and the active site tyrosine in the K/VP.5 topoisomerase II gene indicated that no mutations were present in these domains. In addition, single-strand conformational polymorphism analysis of restriction fragments encompassing the entire topoisomerase II cDNA revealed no evidence of mutations in the gene for this enzyme in K/VP.5 cells. Nuclear extracts from K562 (but not K/VP.5) cells contained a heat-labile factor that potentiated VP-16-induced topoisomerase II/DNA covalent complex formation in isolated nuclei from K/VP.5 cells. Immunoprecipitated topoisomerase II from K/VP.5 cells was 2.5-fold less phosphorylated, compared with enzyme from K562 cells. Collectively, our data suggest that acquired VP-16 resistance is mediated, at least in part, by altered levels or activity of a kinase that regulates topoisomerase II phosphorylation and hence drug-induced topoisomerase II/DNA covalent complex formation and stability.  相似文献   

2.
We characterized three human brain tumor cell lines (D54, HBT-20, and HBT-28) with respect to resistance to etoposide (VP-16), a topoisomerase II-reactive drug. All three cell lines were inherently resistant to VP-16 when compared to other human cell lines, with D54 showing the greatest resistance using colony formation assays. Resistance to VP-16 has been attributed to decreased drug uptake and changes in topoisomerase II; however, drug uptake and topoisomerase II protein levels (immunoblot) were no lower in D54 than in HBT-20 and HBT-28, cell lines relatively more sensitive to VP-16. More to the point, measurement of topoisomerase II-mediated DNA cleavage of cellular DNA after treatment with VP-16 showed that the topoisomerase II in these cells was active. These data indicate mechanisms other than those attributable to decreased drug uptake or altered topoisomerase II exist for clinical resistance to VP-16. VP-16-induced DNA cleavage has been associated with apoptosis in some cell lines; however, neither DNA laddering nor morphological changes characteristic of apoptosis were detected in these cell lines after treatment with VP-16. Bcl-2 and mutant p53 were present in these cells. Either of these conditions can prevent apoptosis and could explain a dissociation between the proximal mediator of VP-16-induced cytotoxicity (topoisomerase II-DNA complex formation) and cellular death.  相似文献   

3.
Rhizoxin is a new macrocyclic lactone isolated from the fungus Rhizopus chinensis. In an attempt to predict the effectiveness of rhizoxin in the treatment of lung cancer, we compared the antitumor activity of rhizoxin with those of cisplatin and etoposide using four small cell lung cancer (SCLC) cell lines, SBC-2, -3, -4, and -7, and two non-small cell lung cancer (NSCLC) cell lines, ABC-1 and EBC-1. The concentrations producing 50% inhibition of the growth of these cell lines (IC50) for each drug were obtained by MTT assay. The IC50 of rhizoxin for these cell lines ranged 0.408 nM to 1.56 nM, which were significant lower than those of cisplatin (660 nM to 16,300 nM) and etoposide (275 nM to 31,300 nM). The ratio of IC50 for the most sensitive cell line, SBC-3, to that for the most resistant cell line was less than 4-fold in rhizoxin, in contrast to more than 20-fold in cisplatin and 100-fold in etoposide. Cross-resistance of rhizoxin to cisplatin and etoposide was investigated using a cisplatin-resistant SCLC subline, SBC-3/CDDP, and an etoposide-resistant SCLC subline, SBC-3/ETP. Of interest, the parent cell line, and the resistant sublines were equally sensitive to rhizoxin, indicating rhizoxin being non-cross-resistant to cisplatin and etoposide. In conclusion, rhizoxin may be beneficial in the salvage chemotherapy of drug-resistant SCLC and non-SCLC.  相似文献   

4.
We previously established a rapid and facile polymerase chain reaction (PCR)-stop assay for quantitation of specific gene damage in very small numbers of cells. The present study investigated whether the PCR-stop assay was able to detect variation in the extent of DNA damage in transcribed active genes between cisplatin- or VP-16-resistant and sensitive cells. The assay demonstrated that about twice as much genetic damage occurs in PC-9 cells than in cisplatin-resistant PC-9/CDDP cells following cisplatin exposure and about 4.6 times more damage occurs in H69 than in VP-16-resistant H69/VP cells following VP-16 exposure. These results show that DNA damage, as detected by PCR-stop assay, correlates with cytotoxicity. In conclusion, the PCR-stop assay could be useful in detecting variation in DNA damage in specific genes.  相似文献   

5.
Etoposide (VP-16) and cisplatin are widely used in the treatment of malignancy. It is a common clinical observation that patients may initially respond to this two drug combination but later become resistant to it. Data from the CCL-159 lymphoblast cell line suggests that the emergence of resistance may be by means other than multiple drug resistance gene expression. The data suggest that chemotherapeutic failure may be mediated in part by a relatively inefficient method of drug resistance, the unstable expression of low-level drug resistance by a minority of cells. These results may help explain how patients whose malignancies are initially sensitive to VP-16/cisplatin later develop drug resistance.  相似文献   

6.
KB/7D cells represent a multidrug-resistant subclone of human nasopharyngeal carcinoma KB cells generated by continuous exposure to the topoisomerase II inhibitor VP-16 (etoposide). KB/7D cells also show cross-resistance to doxorubicin and vincristine. Phenotypic traits of the cell line include a 2-fold decrease in topoisomerase II levels and a decrease in the uptake of VP-16 without an increase in the rate of drug efflux or expression of P-glycoprotein, suggesting a novel mechanism associated with the uptake of anticancer drugs. This study demonstrated that the multidrug-resistance associated protein (MRP) is overexpressed in KB/7D cells, and that the loss of resistance in revertant cells correlates with the loss of MRP. The resistance to VP-16 and doxorubicin could be overcome, partially, and resistance to vincristine could be overcome completely, by the L-enantiomer of verapamil, but not by the D-enantiomer or by BIBW 22 (4-[N-(2-hydroxy-2-methyl-propyl)-ethanolamino]-2,7-bis[cis-2,6-++ +dimethylmorpholino)-6-phenylpteridin), an inhibitor of MDR-1. L-Verapamil was shown to be significantly more potent than D-verapamil in modulating the accumulation defect in KB/7D cells towards doxorubicin, as measured by flow cytometry and confocal microscopy, and towards VP-16, as measured by increases in protein-linked DNA strand breaks. This suggests that KB/7D cells are multidrug resistant due to decreases in topoisomerase II levels and the overexpression of MRP, that MRP leads to a decrease in drug accumulation, and that L-verapamil can modulate the MRP-associated accumulation defect and drug-resistance phenotype. This contrasts with previous studies that suggest that MRP causes multidrug resistance by exporting cytotoxic drugs out of the cell and that did not show modulation of MRP by verapamil.  相似文献   

7.
The efficacy of all chemotherapeutic agents is limited by the occurrence of drug resistance. For etoposide (VP-16), increased expression of MDR-1 or MRP and alterations in topoisomerase IIalpha have been shown to confer tolerance. To further understand resistance to VP-16, three sublines, designated MCF-7-VP17, ZR-75B-VP13, and MDA-MB-231-VP7, were initially isolated as single clones from parental cells by exposure to VP-16. Subsequently, a population of cells from each subline was exposed to 3-fold higher drug concentrations, allowing stable sublines to be established at higher extracellular drug concentrations. Characterization of the resistant sublines demonstrates the adaptation that occurs with advancing drug concentrations during in vitro selections. Reduced topoisomerase II mRNA and protein levels were observed in the initial isolates. This reduction was accompanied by a decrease in topoisomerase II activity and cellular growth rate and was associated with 6-314-fold resistance to topoisomerase II poisons. With advancing resistance, MRP expression increased and VP-16 accumulation decreased. This adaptation allowed for partial restoration of topoisomerase II activity as a result of increased expression (MCF-7-VP17 and ZR-75B-VP13) or hyperphosphorylation (MDA-MB-231-VP7), with a resultant increase in growth rate. In MDA-MB-231-VP7 cells, hyperphosphorylation coincided with increased casein kinase II mRNA and protein levels, suggesting a role for this kinase in the acquired hyperphosphorylation. In this cell line, hyperphosphorylation mediated the increased activity despite a fall in topoisomerase IIalpha protein levels secondary to an acquired 600-bp deletion in one topoisomerase IIalpha allele, which resulted in reduced protein levels. In all three sublines, high levels of resistance were attained as a result of synergism between the reduced topoisomerase IIalpha levels and MRP overexpression. These studies demonstrate how cellular adaptation to increasing drug pressure occurs and how more than one mechanism can contribute to the resistant phenotype when increasing selecting pressure is applied. Reduced expression of topoisomerase II is sufficient to confer substantial resistance early in the selection process, with synergy from MRP overexpression helping to confer high levels of resistance.  相似文献   

8.
We have established an in vivo etoposide-resistant glioma cell line (C6/VP) from C6 rat glioma cells by stepwise exposure to increasing doses of etoposide. The C6/VP cells were 10 times more resistant to etoposide than the parental C6 cells. In addition C6/VP cells demonstrated cross-resistance to vincristine and vinblastine, but not to ADM or m-AMSA. Interestingly, the cells had collateral sensitivity to ACNU, cisDDP and Ara-C. The C6/VP cells did not express the MDR gene or p-glycoprotein, while they showed 16 times less topoisomerase II catalytic activity compared to the C6 cells. Although there was no significant difference between C6 and C6/VP cells in amounts of topoisomerase II in nuclear extracts, the C6/VP cells had 2.9 times higher amounts of the enzyme than C6 cells in nuclear scaffold prepared from a relatively low-salt buffer (0.5 M NaCl). Northern blot analysis demonstrated that mRNAs of topoisomerase IIalpha isoforms were expressed both in C6 and C6/VP cells, and that the amounts of topoisomerase IIalpha in C6/VP cells were 14 times greater than in C6 cells. The total uptake of etoposide in tumor tissues derived from C6/VP cells was 3 times less than those derived from parental C6 cells. These results indicate that the C6/VP acquired a multi-drug resistance phenotype by a reduction of the catalytic activity of topoisomerase II and/or diminished accumulation of drugs. This phenotype did not involve the p-glycoprotein. Alterations of topoisomerase II in the C6/VP cells also were accompanied by an increased amount of the topoisomerase IIalpha isoform, most of which was localized in the nuclear scaffold (matrix). This suggests that altered binding of topoisomerase II to topologically organized DNAs in the nuclear scaffold may be the molecular basis of this multi-drug resistance phenotype.  相似文献   

9.
Etoposide (VP-16) is an antitumor drug currently in use for the treatment of a number of human cancers. Mechanisms of VP-16 cytotoxicity involve DNA breakage secondary to inhibition of DNA topoisomerase II and/or direct drug-induced DNA strand cleavage. The VP-16 molecule contains a hindered phenolic group which is crucial for its antitumor activity because its oxidation yields reactive metabolites (quinones) capable of irreversible binding to macromolecular targets. VP-16 phenoxyl radical is an essential intermediate in VP-16 oxidative activation and can be either converted to oxidation products or reduced by intracellular reductants to its initial phenolic form. In the present paper we demonstrate that the tyrosinase-induced VP-16 phenoxyl radical could be reduced by ascorbate, glutathione (GSH) and dihydrolipoic acid. These reductants caused a transient disappearance of a characteristic VP-16 phenoxyl radical ESR signal which reappeared after depletion of the reductant. The reductants completely prevented VP-16 oxidation by tyrosinase during the lag-period as measured by high performance liquid chromatography; after the lag-period VP-16 oxidation proceeded with the rate observed in the absence of reductants. In homogenates of human K562 leukemic cells, the tyrosinase-induced VP-16 phenoxyl radical ESR signal could be observed only after a lag-period whose duration was dependent on cell concentration; VP-16 oxidation proceeded in cell homogenates after this lag-period. In homogenates of isolated nuclei, the VP-16 phenoxyl radical and VP-16 oxidation were also detected after a lag-period, which was significantly shorter than that observed for an equivalent amount of cells. In both cell homogenates and in nuclear homogenates, the duration of the lag period could be increased by exogenously added reductants. The duration of the lag-period for the appearance of the VP-16 phenoxyl radical signal in the ESR spectrum can be used as a convenient measure of cellular reductive capacity. Interaction of the VP-16 phenoxyl radical with intracellular reductants may be critical for its metabolic activation and cytotoxic effects.  相似文献   

10.
The ability of mitotane, a DDT derivative with adrenotoxic activity, and lonidamine, an energolytic derivative of indazole-carboxylic acid, to modulate the cytotoxic activity of doxorubicin, epidoxorubicin, cisplatin and VP16 was investigated in a human adrenocortical carcinoma cell line (SW13). A marked variability in cellular response to a 1-h treatment with the individual anticancer agents was observed. The concentrations able to inhibit SW13 cell proliferation by 50% (IC50) were 0.45 microg/ml and 0.4 microg/ml for doxorubicin and epidoxorubicin, respectively, thus indicating a relative sensitivity to anthracyclines. Conversely, the SW13 cell line displayed a marked resistance to cisplatin (IC50, 13.9 microg/ml) and VP16 (IC50, 15 microg/ml). When cells were exposed to anticancer drugs and mitotane simultaneously or in sequence, a positive modulation of anthracycline cytotoxic effects was observed. Although to a lesser extent, mitotane also increased cisplatin activity. Conversely, no potentiation was observed when mitotane was combined with VP16. Lonidamine slightly increased the cytotoxicity of epirubicin and cisplatin as individual agents. Moreover, a supra-additive effect of the three-drug (epidoxorubicin-cisplatin-lonidamine) combination was observed.  相似文献   

11.
Separate mechanisms underlying the multidrug resistant (MDR) phenotype were identified in 2 independent approaches to select tumour cells resistant to low concentrations of doxorubicin (Dox) from the sensitive T cell leukemia cell line CCRF-CEM. The CEM/A7 cell line was selected at an initial concentration of 0.005 microgram/ml of Dox and maintained at 0.07 microgram/ml. In contrast, the CEM/A5 line was selected using an initial concentration of 0.01 microgram/ml and maintained in Dox at a concentration of 0.05 microgram/ml. P-glycoprotein expression was demonstrated in the CEM/A7 line but not the CEM/A5 line. Amplification of the mdrI gene was not observed in the CEM/A7 cell line. Both cell lines showed cross-resistance to a number of structurally unrelated cytotoxic drugs including anthracyclines and etoposide (VP-16), although only the CEM/A7 line was cross resistant to Vinca alkaloids. Immunoblots of total cell lysates of the CEM/A5 line have revealed almost undetectable levels of topoisomerase II alpha and beta in this line. Cytogenetic analyses of both lines revealed numerous karyotypic abnormalities which were present in the parental cell line as well as both resistant cell lines. The CEM/A7 line also demonstrated a duplication of part of the long arm of chromosome 7 which included the region containing the mdrI gene, a finding not seen in the parental or CEM/A5 line. CEM/A5, however, demonstrated an abnormality of chromosome 7, outside the region of the mdrI gene, and it also contained a deletion of the short arm of chromosome 2. Abnormalities in this latter region of genome have been associated with non-P-glycoprotein-mediated MDR.  相似文献   

12.
Amine-carboxyboranes with varying alkyl chain lengths were observed to be potent cytotoxic agents inhibiting the growth of a number of histological types of murine, rat, and human tumors. These agents preferentially reduced L1210 DNA synthesis with marked inhibition of the activities of regulatory enzymes of the purine pathway. Other enzyme activities which were marginally reduced were DNA polymerase alpha, ribonucleoside reductase, dihydrofolate reductase, t-RNA polymerase, and nucleoside kinases. Pyrimidine nucleotide pools were not reduced but DNA strand scission occurred after 24 h incubation with the agents. The amine-carboxyboranes were not DNA topoisomerase II inhibitors at 100 microM. The agents did not cause DNA protein linked breaks themselves; nevertheless, VP-16 [etoposide] induced DNA protein linked breaks were increased two fold in the presence of the agents suggesting synergistic effects. The amine-carboxyboranes decreased protein kinase C mediated phosphorylation of L1210 topoisomerase II protein, potentially decreasing its enzymatic catalytic activity. Thus, the amine-carboxyboranes did not function like VP-16 in affording cleavable products but were synergistic with VP-16 in causing DNA fragmentation. The agents were also additive with VP-16 in reducing tumor cell number, soft-agar colony growth and DNA synthesis and in producing DNA strand scission.  相似文献   

13.
Camptothecins are a new class of anticancer drugs that target DNA topoisomerase I; current efforts are directed toward elucidating optimal combinations of these drugs with other antineoplastic agents. A rationale for the use of sequential therapy involving the combination of camptothecins with topoisomerase II-targeting drugs, such as etoposide, has arisen from observations of increased topoisomerase II protein levels in cell lines resistant to camptothecin. In an effort to understand potential mechanisms of resistance to this strategy, we developed a U-937 cell subline, denoted RERC, that is capable of surviving exposure to sequential topoisomerase poisoning. The RERC cells are 200-fold resistant to camptothecin, 8-fold resistant to etoposide, and 10-fold hypersensitive to cisplatin compared to the parental U-937 cells. Biochemical analyses indicate that the resistant phenotype involves alterations in both topoisomerase I and topoisomerase IIalpha. Topoisomerase I catalytic activity in the resistant cells is similar to that of the parental line but is resistant to camptothecin. Moreover, the resistant cells express a single mRNA species of topoisomerase I that codes for a mutation in codon 533. In addition, topoisomerase IIalpha protein levels are decreased 10-fold in the resistant line, coincident with a two-fold decrease in the expression of topoisomerase IIalpha mRNA. Collectively, these results indicate that resistance to sequential topoisomerase poisoning may involve a reduction in total cellular topoisomerase activity.  相似文献   

14.
The Adriamycin-resistant small cell lung carcinoma cell line, GLC4/ADR, showed large differences in cross-resistance to drugs such as Adriamycin, etoposide (VP-16), teniposide (VM-26), 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), and mitoxantrone, which stimulate the formation of topoisomerase (Topo) II-DNA complexes. GLC4/ADR cells demonstrated a reduced Topo II activity and no detectable levels of the P-glycoprotein compared to the parental GLC4 cells (S. De Jong et al., Cancer Res., 50: 304-309, 1990). In the present study, the resistance to VM-26 (59.5-fold) and to m-AMSA (4-fold) of GLC4/ADR after a 1-h incubation was further analyzed. Using the K(+)-sodium dodecyl sulfate precipitation assay, a reduction in VM-26- and m-AMSA-induced cleavable complex formation was found in GLC4/ADR cells compared to GLC4 cells that was related to the degree of resistance to each drug. Cellular accumulation of the VM-26 analogues VP-16 was 3- to 8-fold less and the accumulation of m-AMSA 1- to 2-fold less in GLC4/ADR cells than in the parental cells. Following the removal of VM-26, the cleavable complexes in GLC4/ADR cells disappeared at least 2-fold faster than in GLC4 cells, while the efflux of VP-16 was also enhanced in the resistant cells. On the contrary, no differences in cleavable complex disappearance or drug efflux between these cell lines were observed with m-AMSA. Efflux of both drugs, however, occurred at a much higher rate than cleavable complex disappearance. Using isolated nuclei, a reduction in cleavable complexes in GLC4/ADR was still observed with VM-26 as well as m-AMSA compared to GLC4. The resistant nuclei and nuclear extracts showed a 3-fold decrease in M(r) 170,000 Topo II by immunoblotting. No differences in cleavable complex formation were found between nuclear extracts of both cell lines, when the Topo II activities were equalized. These findings suggest that the cross-resistance to m-AMSA is due to a decreased amount of Topo II and decreased drug accumulation, while in addition to these mechanisms an increased rate of cleavable complex disappearance is involved in the cross-resistance to VM-26 of the GLC4/ADR cell line.  相似文献   

15.
Gemcitabine (2',2'-difluorodeoxycytidine, dFdC) and etoposide (4'-demethylepipodo-phyllo-toxin-9-4,6-O-ethylidene-beta-D-g lucopyranoside, VP-16) are antineoplastic agents with clinical activity against various types of solid tumors. Because of the low toxicity profile of dFdC and the differences in mechanisms of cytotoxicity, combinations of both drugs were studied in vitro. For this purpose, we used the human ovarian cancer cell line A2780, its cis-diammine-dichloroplatinum-resistant and VP-16 cross-resistant variant ADDP, and two non-small cell lung cancer cell lines, Lewis Lung (LL, murine) and H322 (human). The interaction between the drugs was determined with the multiple drug effect analysis (fixed molar ratio) and with a variable drug ratio. In the LL cell line, the combination of dFdC and VP-16 at a constant molar ratio (dFdC:VP-16 = 1:4 or 1:0.125 after 4- or 24-hr exposure, respectively) was synergistic (combination index [CI], calculated at 50% growth inhibition = 0.7 and 0.8, respectively; CI <1 indicating synergism). After 24- and 72-hr exposure to both drugs at a constant ratio, additivity was found in the A2780, ADDP, and H322 cell lines (dFdC:VP-16 = 1:500 for both exposure times in these cell lines). When cells were exposed to a combination of dFdC and VP-16 for 24 or 72 hr, with VP-16 at its IC25 and dFdC in a concentration range, additivity was found in both the LL and H322 cells; synergism was observed in the A2780 and ADDP cells, which are the least sensitive to VP-16. Schedule dependency was found in the LL cell line; when cells were exposed to dFdC 4 hr prior to VP-16 (constant molar ratio, total exposure 24 hr), synergism was found (CI = 0.5), whereas additivity was found when cells were exposed to VP-16 prior to dFdC (CI = 1.6). The mechanism of interaction between the drugs was studied in more detail in the LL cell line; dFdCTP accumulation was 1.2-fold enhanced by co-incubation with VP-16, and was even more pronounced (1.4-fold) when cells were exposed to VP-16 prior to dFdC. dCTP levels were decreased by VP-16 alone as well as by the combination of both compounds, which may favor phosphorylation of dFdC, thereby increasing dFdCTP accumulation. DNA strand break (DSB) formation was increased for exposure to both compounds together compared to exposure to each compound separately, this effect being most pronounced when cells were exposed to VP-16 prior to dFdC (38% and 0% DSB for dFdC and VP-16 alone, respectively and 97% DSB for the combination). The potentiation in DSB formation might be a result of the inhibition of DNA repair by dFdC. Provided the right schedule is used, VP-16 is certainly a compound eligible for combination with dFdC.  相似文献   

16.
PURPOSE: To correlate cellular glutathione content and gamma-glutamyl cysteine synthetase (gamma GCS) mRNA expression with cisplatin sensitivity in a panel of seven head and neck squamous cancer cell lines. METHODS: Cisplatin IC50 was determined for each cell line using a sodium tetreazolium (XTT) assay. Cellular glutathione content was measured by using a previously reported enzymic method. gamma GCS mRNA expression was measured using an RNase protection assay. RESULTS: Total cellular glutathione was an excellent predictor of cisplatin sensitivity in this series of cell lines. The IC50 for cisplatin in the cell line with the highest glutathione concentration was approximately 90 times higher than in the cell line with the lowest glutathione concentration. Regression analysis showed a highly statistically significant positive correlation between cisplatin IC50 and cellular glutathione (coefficient of determination R2 = 0.81, P = 0.0012). Some-what surprisingly, in contrast to previous studies in ovarian cancer, gamma GCS mRNA expression in these cell lines was not significantly predictive of either total cellular glutathione or cisplatin sensitivity (R2 = 0.005, P = 0.84). As expected, treatment of resistant cell lines with buthionine sulfoximine resulted in decreased cellular glutathione and enhanced cisplatin sensitivity. CONCLUSIONS: Our results suggest that glutathione may be an important determinant of cisplatin sensitivity in clinical head and neck cancer. Since cisplatin is the most active chemotherapy drug for the treatment of this disease, this correlation may have important clinical relevance. The lack of correlation between glutathione level and gamma GCS expression suggests that salvage or alternate synthetic pathways may be critical in these cells.  相似文献   

17.
Topoisomerase I-directed agents are now in Phase I and II clinical trials and show great promise as potentially important agents for cancer chemotherapy. Because of their mechanism of action they may also be potential mutagens; however, their mutagenicity and oncogenicity still remain to be elucidated. We have previously shown that VP-16, a topoisomerase II-directed agent, induces sister chromatid exchanges and gene deletions and/or rearrangements in vitro. These observations may account for both the cytotoxic effects of topoisomerase II-directed agents as well as their recently reported leukemonogenic potential. To evaluate the potential mutagenicity of topoisomerase I-directed drugs, we measured mutant frequencies at the hypoxanthine phosphoribosyl transferase locus of the V79 Chinese hamster fibroblast cell line treated with the topoisomerase I-directed drugs camptothecin and topotecan, and compared these results with mutant frequency obtained with the topoisomerase II-directed drug VP-16 and an alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). All of these drugs showed a dose-dependent increase in mutant frequency at the hypoxanthine phosphoribosyl transferase locus. At a dose producing approximately 30% survival, VP-16, camptothecin, and topotecan induced mutant frequencies of 11.3 x 10(-6), 4.9 x 10(-6), and 2.7 x 10(-6), respectively, whereas the spontaneous mutant frequency at this locus was 0.3 x 10(-6). In contrast, the alkylating agent MNNG produced a mutant frequency of 562 x 10(-6) at 26% survival dose. The molar mutagenic potencies, expressed as mutant frequency/mol-h exposure, for VP-16, camptothecin, topotecan, and MNNG at approximately 30% survival dose were 0.9, 8.2, 2.3, and 56.8, respectively. On Southern blot analysis after EcoRI, PstI, or HindIII digestion, 6 of 12 independent thioguanine-resistant mutants induced by topotecan showed gene deletions or rearrangements. In contrast, five of five independent spontaneous mutants and six of six independent mutants induced by MNNG demonstrated the same restriction pattern as the parental V79 cells. These results indicate that the mutant frequency and the mutagenic potential of topoisomerase I and II active agents are quantitatively similar. The results further demonstrate that topoisomerase I and II active agents introduce mutations characterized by gene deletions and rearrangements, whereas spontaneous mutations and those induced by alkylating agents appeared to be more characteristically associated with point mutations. Thus, clinical use of the topoisomerase I and II active agents is expected to cause similar mutagenic effects that could potentially lead to secondary malignancies.  相似文献   

18.
Mechanisms of cisplatin resistance have been studied in two independently-selected sublines expressing clinically-relevant levels of resistance (3-fold) and established from a primary testicular teratoma obtained from previously untreated patients. Resistance was not associated with any significant modification in cellular uptake of cisplatin, in total glutathione levels or associated enzyme activities. However, immunochemical quantitation of specific platinum-DNA adduct formation and removal revealed that both resistant sublines were more proficient in repairing certain adducts than their generally repair deficient respective parental lines. SUSA/CP+ cells were more efficient in removing the intrastrand adducts in the sequence Pt-AG and the bi-functional Pt-(GMP)2 lesions, as well as DNA-DNA interstrand cross-links, whilst H12.1/DDP cells were highly proficient in removing the major Pt-GG intrastrand adducts.  相似文献   

19.
The novel anticancer glucosyl derivative of indolo-carbazole (NB-506), an inhibitor of DNA topoisomerase I, exhibited strong in vitro cytotoxicity against various human cancer cell lines. In order to elucidate its cytotoxic mechanisms, we established nine NB-506-resistant sublines with different resistance ratios from human small cell lung cancer cells (SBC-3/P) by stepwise and brief exposure (24 h) to NB-506. Among them, SBC-3/NB#9 was 454 times more resistant to NB-506 than the parent cell line. The SBC-3/NB#9 cells showed cross-resistance only to topoisomerase I inhibitors, such as 11,7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecia and 7-ethyl-10-hydroxy-camptothecin, and not to other anticancer drugs, such as vincristine, vinblastine, Adriamycin, etoposide, and teniposide. These results indicate that the difference on the effect of topoisomerase I was considered to be related to a resistance mechanism. The topoisomerase I activities of nuclear extracts eluted from SBC-3/NB#9 cells was only one-tenth of the parent cell activity. A Western blotting study indicated that this lower activity was due to a lower amount of DNA topoisomerase I. Furthermore, we found correlations between topoisomerase I activity and sensitivity to NB-506 in sublines with different degrees of resistance. Accumulation of 3H-labeled NB-506 by SBC-3/NB#9 cells was only one-fifth of that by the parent cells, whereas intracellular accumulation of 3H-labeled camptothecin by both cell lines did not differ. The reduction of accumulation was specific to NB-506, and this result may explain why the resistance ratio for NB-506 was higher than those for 11,7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-hydroxy-camptothecin.  相似文献   

20.
Hyperthermia has been shown to be an effective radiation sensitizer. Cisplatin has also been shown to cause radiosensitization. In part, the sensitization is through the inhibition of repair of radiation damage. In this study we have set out to combine low dose-rate irradiation (during which extensive repair occurs) with both cisplatin and hyperthermia to maximize the radiation sensitizing effect. Two human ovarian carcinoma cell lines, one parental (A2780S) and the other a cisplatin resistant derivative (A2780CP) cell line were used in these experiments. Long duration hyperthermia at 40 degrees C was combined with low concentrations of cisplatin (0.5-3 microg/ml) and low dose-rate irradiation (LDRI). The responses to the individual treatments showed that there was cross resistance in the two cell lines for cisplatin and radiation, but for hyperthermia the opposite effect was found. When all treatments were given concurrently the response was greater than the calculated response of all three individual treatments, indicating a synergistic interaction. The effect was greater in the cisplatin resistant cell line. The combination of mild hyperthermia, low dose cisplatin and LDRI are a good combination for potential clinical application. In addition, this could be a good approach to deal with cisplatin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号