首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the transport properties in p-type GaAs nanopillars (NPs) grown on GaAs(111) B substrates using selective-area epitaxy by studying single-NP field-effect transistors. Experimental results indicate that normalized resistance and field-effect mobility are highly sensitive to NP dimensions. Both in situ and ex?situ chemical surface passivation techniques are found to significantly improve conductivity and mobility, especially for the smaller diameter NPs. A semi-empirical model based on diameter dependent mobility is used to extract actual doping levels and surface state density by fitting normalized resistance as a function of NP diameter. Surface state densities before and after passivation are found to be 5?×?10(12)?cm(-2)?eV(-1) and 7?×?10(10)?cm(-2)?eV(-1), respectively.  相似文献   

2.
We demonstrate the growth of high quality graphene layers by chemical vapor deposition (CVD) on insulating and conductive SiC substrates. This method provides key advantages over the well-developed epitaxial graphene growth by Si sublimation that has been known for decades. (1) CVD growth is much less sensitive to SiC surface defects resulting in high electron mobilities of ~1800 cm(2)/(V s) and enables the controlled synthesis of a determined number of graphene layers with a defined doping level. The high quality of graphene is evidenced by a unique combination of angle-resolved photoemission spectroscopy, Raman spectroscopy, transport measurements, scanning tunneling microscopy and ellipsometry. Our measurements indicate that CVD grown graphene is under less compressive strain than its epitaxial counterpart and confirms the existence of an electronic energy band gap. These features are essential for future applications of graphene electronics based on wafer scale graphene growth.  相似文献   

3.
It is shown that ZnO nanorods and nanodots grown by MOCVD exhibit enhanced radiation hardness against high energy heavy ion irradiation as compared to bulk layers. The decrease of the luminescence intensity induced by 130?MeV Xe(23+) irradiation at a dose of 1.5 × 10(14)?cm(-2) in ZnO nanorods is nearly identical to that induced by a dose of 6 × 10(12)?cm(-2) in bulk layers. The damage introduced by irradiation is shown to change the nature of electronic transitions responsible for luminescence. The change of excitonic luminescence to the luminescence related to the tailing of the density of states caused by potential fluctuations occurs at an irradiation dose around 1 × 10(14)?cm(-2) and 5 × 10(12)?cm(-2) in nanorods and bulk layers, respectively. More than one order of magnitude enhancement of radiation hardness of ZnO nanorods grown by MOCVD as compared to bulk layers is also confirmed by the analysis of the near-bandgap photoluminescence band broadening and the behavior of resonant Raman scattering lines. The resonant Raman scattering analysis demonstrates that ZnO nanostructures are more radiation-hard as compared to nanostructured GaN layers. High energy heavy ion irradiation followed by thermal annealing is shown to be a way for the improvement of the quality of ZnO nanorods grown by electrodeposition and chemical bath deposition.  相似文献   

4.
A Behnam  AS Lyons  MH Bae  EK Chow  S Islam  CM Neumann  E Pop 《Nano letters》2012,12(9):4424-4430
We study graphene nanoribbon (GNR) interconnects obtained from graphene grown by chemical vapor deposition (CVD). We report low- and high-field electrical measurements over a wide temperature range, from 1.7 to 900 K. Room temperature mobilities range from 100 to 500 cm(2)·V(-1)·s(-1), comparable to GNRs from exfoliated graphene, suggesting that bulk defects or grain boundaries play little role in devices smaller than the CVD graphene crystallite size. At high-field, peak current densities are limited by Joule heating, but a small amount of thermal engineering allows us to reach ~2 × 10(9) A/cm(2), the highest reported for nanoscale CVD graphene interconnects. At temperatures below ~5 K, short GNRs act as quantum dots with dimensions comparable to their lengths, highlighting the role of metal contacts in limiting transport. Our study illustrates opportunities for CVD-grown GNRs, while revealing variability and contacts as remaining future challenges.  相似文献   

5.
We demonstrate the first successful growth of large-area (200 × 200 μm(2)) bilayer, Bernal stacked, epitaxial graphene (EG) on atomically flat, 4H-SiC (0001) step-free mesas (SFMs) . The use of SFMs for the growth of graphene resulted in the complete elimination of surface step-bunching typically found after EG growth on conventional nominally on-axis SiC (0001) substrates. As a result heights of EG surface features are reduced by at least a factor of 50 from the heights found on conventional substrates. Evaluation of the EG across the SFM using the Raman 2D mode indicates Bernal stacking with low and uniform compressive lattice strain of only 0.05%. The uniformity of this strain is significantly improved, which is about 13-fold decrease of strain found for EG grown on conventional nominally on-axis substrates. The magnitude of the strain approaches values for stress-free exfoliated graphene flakes. Hall transport measurements on large area bilayer samples taken as a function of temperature from 4.3 to 300 K revealed an n-type carrier mobility that increased from 1170 to 1730 cm(2) V(-1) s(-1), and a corresponding sheet carrier density that decreased from 5.0 × 10(12) cm(-2) to 3.26 × 10(12) cm(-2). The transport is believed to occur predominantly through the top EG layer with the bottom layer screening the top layer from the substrate. These results demonstrate that EG synthesized on large area, perfectly flat on-axis mesa surfaces can be used to produce Bernal-stacked bilayer EG having excellent uniformity and reduced strain and provides the perfect opportunity for significant advancement of epitaxial graphene electronics technology.  相似文献   

6.
Liao BH  Kuo CC  Chen PJ  Lee CC 《Applied optics》2011,50(9):C106-C110
Fluorine-doped tin oxide (FTO) films have been deposited by pulsed DC magnetron sputtering with an Sn target. Various ratios of CF4/O2 gas were injected to enhance the optical and electrical properties of the films. The extinction coefficient was lower than 1.5×10(-3) in the range from 400 to 800?nm when the CF4O2 ratio was 0.375. The resistivity of fluorine-doped SnO2 films (1.63×10(-3)?Ω?cm) deposited at 300?°C was 27.9 times smaller than that of undoped SnO2 (4.55×10(-2)?Ω?cm). Finally, an FTO film was consecutively deposited for protecting the oxidation of indium tin oxide films. The resistivity of the double-layered film was 2.68×10(-4)?Ω?cm, which increased by less than 39% at a 450?°C annealing temperature for 1?h in air.  相似文献   

7.
J Wei  J Qiu  L Li  L Ren  X Zhang  J Chaudhuri  S Wang 《Nanotechnology》2012,23(33):335707
In this paper, a 'green' and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5?×?10(-7)?M to 2?×?10(-5)?M with a detection limitation of 7.5?×?10(-8)?M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.  相似文献   

8.
The charge transport properties of thin films of sol-gel processed undoped and Al-doped zinc oxide nanoparticles with variable doping level between 0.8 and 10?at.% were investigated. The x-ray diffraction studies revealed a decrease of the average crystallite sizes in highly doped samples. We provide estimates of the conductivity and the resulting charge carrier densities with respect to the doping level. The increase of charge carrier density due to extrinsic doping was compared to the accumulation of charge carriers in field effect transistor structures. This allowed us to assess the scattering effects due to extrinsic doping on the electron mobility. The latter decreases from 4.6 × 10(-3) to 4.5 × 10(-4)?cm(2)?V(-1)?s(-1) with increasing doping density. In contrast, the accumulation leads to an increasing mobility up to 1.5 × 10(-2)?cm(2)?V(-1)?s(-1). The potential barrier heights related to grain boundaries between the crystallites were derived from temperature dependent mobility measurements. The extrinsic doping initially leads to a grain boundary barrier height lowering, followed by an increase due to doping-induced structural defects. We conclude that the conductivity of sol-gel processed nanocrystalline ZnO:Al is governed by an interplay of the enhanced charge carrier density and the doping-induced charge carrier scattering effects, achieving a maximum at 0.8?at.% in our case.  相似文献   

9.
Ferroic-order parameters are useful as state variables in non-volatile information storage media because they show a hysteretic dependence on their electric or magnetic field. Coupling ferroics with quantum-mechanical tunnelling allows a simple and fast readout of the stored information through the influence of ferroic orders on the tunnel current. For example, data in magnetic random-access memories are stored in the relative alignment of two ferromagnetic electrodes separated by a non-magnetic tunnel barrier, and data readout is accomplished by a tunnel current measurement. However, such devices based on tunnel magnetoresistance typically exhibit OFF/ON ratios of less than 4, and require high powers for write operations (>1?×?10(6)?A?cm(-2)). Here, we report non-volatile memories with OFF/ON ratios as high as 100 and write powers as low as ~1?×?10(4)?A?cm(-2) at room temperature by storing data in the electric polarization direction of a ferroelectric tunnel barrier. The junctions show large, stable, reproducible and reliable tunnel electroresistance, with resistance switching occurring at the coercive voltage of ferroelectric switching. These ferroelectric devices emerge as an alternative to other resistive memories, and have the advantage of not being based on voltage-induced migration of matter at the nanoscale, but on a purely electronic mechanism.  相似文献   

10.
Direct growth of graphene/hexagonal boron nitride stacked layers   总被引:1,自引:0,他引:1  
Liu Z  Song L  Zhao S  Huang J  Ma L  Zhang J  Lou J  Ajayan PM 《Nano letters》2011,11(5):2032-2037
Graphene (G) and atomic layers of hexagonal boron nitride (h-BN) are complementary two-dimensional materials, structurally very similar but with vastly different electronic properties. Recent studies indicate that h-BN atomic layers would be excellent dielectric layers to complement graphene electronics. Graphene on h-BN has been realized via peeling of layers from bulk material to create G/h-BN stacks. Considering that both these layers can be independently grown via chemical vapor deposition (CVD) of their precursors on metal substrates, it is feasible that these can be sequentially grown on substrates to create the G/h-BN stacked layers useful for applications. Here we demonstrate the direct CVD growth of h-BN on highly oriented pyrolytic graphite and on mechanically exfoliated graphene, as well as the large area growth of G/h-BN stacks, consisting of few layers of graphene and h-BN, via a two-step CVD process. The G/h-BN film is uniform and continuous and could be transferred onto different substrates for further characterization and device fabrication.  相似文献   

11.
Hybrid graphene-quantum dot phototransistors with ultrahigh gain   总被引:1,自引:0,他引:1  
Graphene is an attractive material for optoelectronics and photodetection applications because it offers a broad spectral bandwidth and fast response times. However, weak light absorption and the absence of a gain mechanism that can generate multiple charge carriers from one incident photon have limited the responsivity of graphene-based photodetectors to ~10(-2)?A?W(-1). Here, we demonstrate a gain of ~10(8) electrons per photon and a responsivity of ~10(7)?A?W(-1) in a hybrid photodetector that consists of monolayer or bilayer graphene covered with a thin film of colloidal quantum dots. Strong and tunable light absorption in the quantum-dot layer creates electric charges that are transferred to the graphene, where they recirculate many times due to the high charge mobility of graphene and long trapped-charge lifetimes in the quantum-dot layer. The device, with a specific detectivity of 7?×?10(13) Jones, benefits from gate-tunable sensitivity and speed, spectral selectivity from the short-wavelength infrared to the visible, and compatibility with current circuit technologies.  相似文献   

12.
S Chen  Q Li  Q Zhang  Y Qu  H Ji  RS Ruoff  W Cai 《Nanotechnology》2012,23(36):365701
The thermal conductivity (κ) of suspended graphene membranes made by chemical vapor deposition (CVD) was measured by micro-Raman mapping. Cracks and wrinkles present in these suspended graphene membranes were identified by micro-Raman mapping, and κ values and their statistics were obtained on membranes free of such imperfections in a single mapping. Based on this new technique, an average κ value of 1875?±?220?W?m(-1)?K(-1) at 420?K was measured on 26 suspended graphene membranes that were free of wrinkles, ~27% higher than the average value measured from 12 graphene membranes with wrinkles. These results suggest that the variation in published thermal conductivity values for suspended graphene samples could, at least in part, be due to the presence or absence of wrinkles.  相似文献   

13.
The high carrier mobility of graphene is key to its applications, and understanding the factors that limit mobility is essential for future devices. Yet, despite significant progress, mobilities in excess of the 2×10(5) cm(2) V(-1) s(-1) demonstrated in free-standing graphene films have not been duplicated in conventional graphene devices fabricated on substrates. Understanding the origins of this degradation is perhaps the main challenge facing graphene device research. Experiments that probe carrier scattering in devices are often indirect, relying on the predictions of a specific model for scattering, such as random charged impurities in the substrate. Here, we describe model-independent, atomic-scale transport measurements that show that scattering at two key defects--surface steps and changes in layer thickness--seriously degrades transport in epitaxial graphene films on SiC. These measurements demonstrate the strong impact of atomic-scale substrate features on graphene performance.  相似文献   

14.
The electrical properties of boron nitride (BN) nanostructures, particularly BN nanotubes (NTs), have been studied less in comparison to the counterpart carbon nanotubes. The present work investigates the field emission (FE) behavior of BNNTs under multiple cycles of FE experiments and demonstrates a strain-engineering pathway to tune the electronic properties of BNNTs. The electrical probing of individual BNNTs were conducted inside a transmission electron microscope (TEM) using an in?situ electrical holder capable of applying a bias voltage of up to 110?V. Our results indicate that in the first cycle a single BNNT can exhibit the current density of ~1?mA?cm(-2) at 110?V and the turn-on voltage of 325?V?μm(-1). However, field emission properties reduced considerably in subsequent cycles. Real-time imaging revealed the structural degradation of individual BNNTs during FE experiments. The electromechanical measurements show that the conductivity of BNNTs can be tuned by means of mechanical straining. The resistance of individual BNNTs reduced from 2000 to 769?MΩ and the carrier concentration increased from 0.35?×?10(17) to 1.1?×?10(17)?cm(-3) by straining the samples up to 2.5%.  相似文献   

15.
Shim J  Lui CH  Ko TY  Yu YJ  Kim P  Heinz TF  Ryu S 《Nano letters》2012,12(2):648-654
We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm thick bilayers were found to be present in regions of the interface of graphene/mica heterostacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene with hole densities of (9 ± 2) × 10(12) cm(-2). The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, which is in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.  相似文献   

16.
In this work, low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) experiments have been carried out to investigate the optical and electronic properties of InAs/GaAs quantum dots (QDs) subjected to room-temperature proton implantation at various doses (5 × 10(10)-10(14)?ions?cm(-2)) and subsequent thermal annealing. The energy shift of the main QD emission band is found to increase with increasing implantation dose. Our measurements show clear evidence of an inhomogeneous In/Ga intermixing at low proton implantation doses (≤5 × 10(11)?ions?cm(-2)), giving rise to the coexistence of intermixed and non-intermixed QDs. For higher implantation doses, a decrease of both the PL linewidth and the intersublevel spacing energy have been found to occur, suggesting that the dot-size, dot-composition and dot-strain distributions evolve towards more uniform ones.  相似文献   

17.
In this paper we present a study of graphene produced by chemical vapor deposition (CVD) under different conditions with the main emphasis on correlating the thermal and electrical properties with the degree of disorder. Graphene grown by CVD on Cu and Ni catalysts demonstrates the increasing extent of disorder at low deposition temperatures as revealed by the Raman peak ratio, IG/ID. We relate this ratio to the characteristic domain size, La, and investigate the electrical and thermal conductivity of graphene as a function of La. The electrical resistivity, ρ, measured on graphene samples transferred onto SiO2/Si substrates shows linear correlation with La(-1). The thermal conductivity, K, measured on the same graphene samples suspended on silicon pillars, on the other hand, appears to have a much weaker dependence on La, close to K~La1/3. It results in an apparent ρ~K3 correlation between them. Despite the progressively increasing structural disorder in graphene grown at lower temperatures, it shows remarkably high thermal conductivity (10(2)-10(3) W K(-1) m(-1)) and low electrical (10(3)-3×10(5) Ω) resistivities suitable for various applications.  相似文献   

18.
Ge nanocrystallites (Ge-nc) embedded in a SiO(2) matrix are investigated using Raman spectroscopy, photoluminescence and Fourier transform infrared spectroscopy. The samples were prepared by ion implantation with different implantation doses (0.5, 0.8, 1, 2, 3 and 4) × 10(16)?cm(-2) using 250?keV energy. After implantation, the samples were annealed at 1000?°C in a forming gas atmosphere for 1?h. All samples show a broad Raman spectrum centred at w≈304?cm(-1) with a slight shift depending on the implantation doses. The Raman intensity also depends on the Ge(74+) dose. A maximum photoluminescence intensity is observed for the sample implanted at room temperature with a dose of 2 × 10(16)?cm(-2) at 3.2?eV. Infrared spectroscopy shows that the SiO(2) films moved off stoichiometry due to Ge(74+) ion implantation, and Ge oxides are formed in it. This result is shown as a reduction of GeO(x) at exactly the dose corresponding to the maximum blue-violet PL emission and the largest Raman emission at 304?cm(-1). Finally, the Raman spectra were fitted with a theoretical expression to evaluate the average size, full-width at half-maximum (FWHM) and dispersion of Ge-nc size.  相似文献   

19.
Jang J  Cho K  Lee SH  Kim S 《Nanotechnology》2008,19(1):015204
Transparent and flexible thin film transistors (TFTs) with channel layers composed of sintered HgTe nanocrystals were fabricated on top of UV/ozone treated plastic substrates and their electrical properties were characterized. A representative TFT with a channel layer composed of sintered HgTe nanocrystals revealed typical p-type characteristics, an on/off current ratio of ~10(3) and a field-effect mobility of 4.1?cm(2)?V(-1)?s(-1). When the substrate was bent until the bending radius of the substrate reached 2.4?cm, which corresponded to a strain of 0.83% that the HgTe thin film experienced, the TFT exhibited an on/off current ratio of ~10(3) and a field-effect mobility of 4.0?cm(2)?V(-1)?s(-1).  相似文献   

20.
Cross R  Cola BA  Fisher T  Xu X  Gall K  Graham S 《Nanotechnology》2010,21(44):445705
A method has been developed to create vertically aligned carbon nanotube (VACNT) thermal interface materials that can be attached to a variety of metallized surfaces. VACNT films were grown on Si substrates using standard CVD processing followed by metallization using Ti/Au. The coated CNTs were then bonded to metallized substrates at 220?°C. By reducing the adhesion of the VACNTs to the growth substrate during synthesis, the CNTs can be completely transferred from the Si growth substrate and used as a die attachment material for electronic components. Thermal resistance measurements using a photoacoustic technique showed thermal resistances as low as 1.7 mm(2) K W(-1) for bonded VACNT films 25-30 μm in length and 10 mm(2) K W(-1) for CNTs up to 130 μm in length. Tensile testing demonstrated a die attachment strength of 40 N cm(-2) at room temperature. Overall, these metallized and bonded VACNT films demonstrate properties which are promising for next-generation thermal interface material applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号