首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 956 毫秒
1.
Oligonucleotide-gold nanoparticle (OGN) conjugates are powerful tools for the detection of target DNA sequences due to the unique properties conferred upon the oligonucleotide by the nanoparticle. Practically all the research and applications of these conjugates have used gold nanoparticles to the exclusion of other noble metal nanoparticles. Here we report the synthesis of oligonucleotide-silver nanoparticle (OSN) conjugates and demonstrate their use in a sandwich assay format. The OSN conjugates have practically identical properties to their gold analogues and due to their vastly greater extinction coefficient both visual and absorption analyses can occur at much lower concentrations. This is the first report of OSN conjugates being successfully used for target DNA detection and offers improved sensitivity which is of interest to a range of scientists.  相似文献   

2.
Although silica nanoparticles are used as building blocks in nature and synthetic mesostructures, the influence of nanoparticle characteristics on the assembly and disassembly of mesostructured silica has not been investigated. We demonstrate that nanoparticle size and size distribution allow us to control the assembly of silica-type mesostructures and that, because of the discrete nature of nanoparticles, we can disassemble these mesostructures into a rich variety of structural building units. When assembling mesostructures, nanoparticles undergo size-dependent segregation once the nanoparticle diameter exceeds a critical size threshold, which is approximated by the root-mean-square end-to-end distance of the hydrophilic block of the block copolymer. Using this phenomenon, we direct gold-silica core-shell nanoparticles into the segregated regions of silica-type mesostructures, demonstrating the ability to precisely place nanoparticles and create compositionally heterogeneous, functional mesostructures. We further show that, because the mesostructures are composed of nanoparticles, they can be disassembled into nanotubes, hexapods and other complex, well-defined structural units, thereby introducing the concept of retrosynthesis to materials chemistry. Our results demonstrate how nanoparticle characteristics influence the structure and properties of nanoparticle-derived mesostructures. Size-dependent segregation and disassembly should improve structure control at the near-molecular level and should be applicable to a wide range of nanoparticle-derived mesostructures.  相似文献   

3.
The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA-DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package.  相似文献   

4.
Highly ordered arrays of nanoparticles exhibit many properties that are not found in their disordered counterparts. However, these nanoparticle superlattices usually form in a far-from-equilibrium dewetting process, which precludes the use of conventional patterning methods owing to a lack of control over the local dewetting dynamics. Here, we report a simple yet efficient approach for patterning such superlattices that involves moulding microdroplets containing the nanoparticles and spatially regulating their dewetting process. This approach can provide rational control over the local nucleation and growth of the nanoparticle superlattices. Using DNA-capped gold nanoparticles as a model system, we have patterned nanoparticle superlattices over large areas into a number of versatile structures with high degrees of internal order, including single-particle-width corrals, single-particle-thickness microdiscs and submicrometre-sized 'supra-crystals'. Remarkably, these features could be addressed by micropatterned electrode arrays, suggesting potential applications in bottom-up nanodevices.  相似文献   

5.
Colloidal gold is extensively used for molecular sensing because of the flexibilities it offers in terms of modification of the gold nanoparticle surface with a variety of functional groups using thiol chemistry. We describe a simple assay that allows the visual detection of glucose in aqueous samples and demonstrates its applicability by estimating glucose in urine. To enable the glucose detection, we functionalized the thiol capped gold nanoparticles with glucose oxidase, the enzyme specific to β-D glucose, using carbodiimide chemistry. The visible color change of the GOD-functionalized gold nanoparticles from red to blue on interaction with glucose is the principle applied here for the sensing of urine glucose level. The solution turns blue when the glucose concentration exceeds 100 μg/mL. The approach depicted here seems to be important, particularly in third world countries where high tech diagnostics aids are inaccessible to the bulk of the population.  相似文献   

6.
Lim II  Njoki PN  Park HY  Wang X  Wang L  Mott D  Zhong CJ 《Nanotechnology》2008,19(30):305102
The ability to create bio-functional nanoprobes for the detection of biological reactivity is important for developing bioassay and diagnostic methods. This paper describes the findings of an investigation of the surface functionalization of gold (Au) and magnetic nanoparticles coated with gold shells (M/Au) by proteins and spectroscopic labels for the creation of nanoprobes for use in surface enhanced Raman scattering (SERS) assays. Highly monodispersed Au nanoparticles and M/Au nanoparticles with two types of magnetic nanoparticle cores (Fe(2)O(3) and MnZn ferrite) were studied as model systems for the bio-functionalization and Raman labeling. Comparison of the SERS intensities obtained with different particle sizes (30-100?nm) and samples in solution versus on solid substrates have revealed important information about the manipulation of the SERS signals. In contrast to the salt-induced uncontrollable and irreversible aggregation of nanoparticles, the ability to use a centrifugation method to control the formation of stable small clustering sizes of nanoparticles was shown to enhance SERS intensities for samples in solution as compared with samples on solid substrates. A simple method for labeling protein-capped Au nanoparticles with Raman-active molecules was also described. The functionalized Au and M/Au nanoparticles are shown to exhibit the desired functional properties for the detection of SERS signals in the magnetically separated reaction products. These results are discussed in terms of the interparticle distance dependence of 'hot-spot' SERS sites and the delineation of the parameters for controlling the core-shell reactivity of the magnetic functional nanocomposite materials in bio-separation and spectroscopic probing.  相似文献   

7.
Colorimetric detection of analytes using gold nanoparticles along with surface-enhanced Raman spectroscopy (SERS) are areas of intense research activity since they both offer sensing of very low concentrations of target species. Multimodal detection promotes the simultaneous detection of a sample by a combination of different techniques; consequently, surface chemistry design in the development of multimodal nanosensors is important for rapid and sensitive evaluation of the analytes by diverse analytical methods. Herein it is shown that nanoparticle size plays an important role in the design of functional nanoparticles for colorimetric and SERS-based sensing applications, allowing controlled nanoparticle assembly and tunable sensor response. The design and preparation of robust nanoparticle systems and their assembly is reported for trace detection of Ni(II) ions as a model system in an aqueous solution. The combination of covalently attached nitrilotriacetic acid moieties along with the L-carnosine dipeptide on the nanoparticle surface represents a highly sensitive platform for rapid and selective detection of Ni(II) ions. This systematic study demonstrates that significantly lower detection limits can be achieved by finely tuning the assembly of gold nanoparticles of different core sizes. The results clearly demonstrate the feasibility and usefulness of a multimodal approach.  相似文献   

8.
Coronavirus disease 2019 (COVID-19), caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the worst pandemic disease of the current millennium. To address this crisis, therapeutic nanoparticles, including inorganic nanoparticles, lipid nanoparticles, polymeric nanoparticles, virus-like nanoparticles, and cell membrane-coated nanoparticles, have all offered compelling antiviral strategies. This article reviews these strategies in three categories: (1) nanoparticle-enabled detection of SARS-CoV-2, (2) nanoparticle-based treatment for COVID-19, and (3) nanoparticle vaccines against SARS-CoV-2. We discuss how nanoparticles are tailor-made to biointerface with the host and the virus in each category. For each nanoparticle design, we highlight its structure–function relationship that enables effective antiviral activity. Overall, nanoparticles bring numerous new opportunities to improve our response to the current COVID-19 pandemic and enhance our preparedness for future viral outbreaks.  相似文献   

9.
The optical and electrical properties of semiconductor nanoparticles are strongly dependent on their size. A flexible control of the size of the nanoparticles is of interest for tuning their properties for different applications. Here we use a coupled method to control the size of CdS nanoparticles. The method involves the photochemical growth of CdS nanoparticles together with the use of a capping agent as an inhibiting factor. CdS nanoparticles were formed through a photoinduced reaction of CdSO(4) and Na(2)S(2)O(3) in an aqueous solution. Mercaptoethanol (C(2)H(6)OS) was used as the capping agent, and we investigated the effect of illumination time, illumination intensity and the concentration of capping agent on the nanoparticle size. Transmission electron microscopy (TEM) shows crystalline nanoparticles with relatively low dispersion. Optical absorption spectroscopy was mainly used to measure the band gap and size of the nanoparticles. Increasing the illumination time or illumination intensity increases the nanoparticle size, while higher capping agent concentration leads to smaller nanoparticle size. A band gap range of 2.75-3.4?eV was possible with our experimental conditions, corresponding to a 3.2-6.0?nm size range.  相似文献   

10.
Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10?? l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.  相似文献   

11.
In this article we report the synthesis of CuS nanoparticle with distinguishable surface plasmonic resonance (SPR) peaks in near infrared region. For this purpose in situ synthesis (one-step fabrication) has been used to prepare CuS nanoparticles in PMMA polymer matrix at room temperature. The X-ray diffraction spectrum confirms the formation of CuS nanoparticles. The transmittance spectra of nano-composite samples reveal that the samples have a good transparency. The absorption spectra show a broad absorption peak in the wavelength region from 570 to 980 nm which is a characteristic SPR peak for CuS nanoparticle. An increase of refractive index was observed for the samples containing CuS nanoparticles. The linear relationship between the refractive index and volume fraction was observed. The appearance of SPR peak in refractive index spectra was attributed to CuS nanoparticles. Shifting of absorption edge to lower photon energy has been observed for nano-composite samples. The direct energy bandgap of nano-composite samples are reduced compare to pure PMMA polymer. The plot between the direct energy band gap and refractive index reveals that the decrease in bandgap energy is associated with the increase in index of refraction. The increase of optical dielectric constant can be ascribed to the formation of CuS nanoparticles. The low band gap of CuS nanoparticles in the present work reveals their importance for applications in optoelectronic devices.  相似文献   

12.
Liu G  Wang J  Wu H  Lin Y 《Analytical chemistry》2006,78(21):7417-7423
A versatile bioassay label based on marker-loaded apoferritin nanoparticles (MLANs) has been developed for sensitive protein detection. Dissociation and reconstitution characteristics at different pH as well as the special cavity structure of apoferritin provides a facile route to prepare nanoparticle labels and avoid the complicated and tedious synthesis process of conventional nanoparticle labels. The optical and electrochemical characteristics of the prepared nanoparticle labels are easily controlled by loading different optical or electrochemical markers. A fluorescence marker (fluorescein anion) and a redox marker [hexacyanoferrate(III)] were used as model markers to load into the cavity of apoferritin nanoparticles for microscopic fluorescence immunoassay and electrochemical immunoassay, respectively. Detection limits of 0.06 (0.39 pM) and 0.08 ng mL(-1) (0.52 pM) IgG were obtained with fluorescein MLAN and hexacyanoferrate MLANs, respectively. The new nanoparticle labels hold great promise for multiplex protein detection (in connection with nanoparticles loaded with different markers) and for enhancing the sensitivity of other bioassays.  相似文献   

13.
Nath N  Chilkoti A 《Analytical chemistry》2004,76(18):5370-5378
The unique optical properties of noble metal nanoparticles have been used to design a label-free biosensor in a chip format. In this paper, we demonstrate that the size of gold nanoparticles significantly affects the sensitivity of the biosensor. Gold nanoparticles with diameters in the range of 12-48 nm were synthesized in solution and sensor chips were fabricated by chemisorption of these nanoparticles on amine-functionalized glass. Sensors fabricated from 39-nm-diameter gold nanoparticles exhibited maximum sensitivity to the change of the bulk refractive index and the largest "analytical volume", defined as the region around the nanoparticle within which a change in refractive index causes a change in the optical properties of the immobilized nanoparticles. The detection limit for streptavidin-biotin binding of a sensor fabricated from 39-nm-diameter nanoparticles was 20-fold better than a previously reported sensor fabricated from 13-nm-diameter gold nanoparticles. We also discuss several other factors that could improve the performance of the next generation of these immobilized metal nanoparticle sensors.  相似文献   

14.
The effects of nanoparticles on processing and flexural mechanical performance of Nicalon/KiON CERASET® continuous fiber ceramic composites by preceramic polymer pyrolysis method have been investigated. Five different nanoparticles varying in size from 15 to 55 nm were used. These nanoparticles are: titanium oxide, yttrium oxide, zinc oxide, silicon carbide, and carbon. Ceramic fiber reinforcements (Nicalon™) and preceramic polymer (KiON CERASET®) was mixed with nano-size fillers in the presence of a surfactant agent to give a good dispersion of the particles during the process. Two different types of nanoparticle filled composites were manufactured. The first one followed neat preceramic polymer reinfiltration cycle; whereas the second system was manufactured with corresponding nanoparticle dispersed preceramic polymer reinfiltration. For comparison purposes, samples without nanoparticles were also manufactured. A characterization analysis of the samples using scanning electron microscopy revealed good quality of the parts. In general, the weight gain percentage at each stage of reinfiltration/pyrolysis for both types of nanoparticle filled ceramic composites is consistently less than that for ceramic composites manufactured without nanoparticles. This indicates the compactness of the nanocomposites. Four-point bending test was also conducted to evaluate the flexural mechanical performance of the ceramic composites samples at room temperature. Nanoparticle filled samples consistently showed significant improvement in flexural strength compared to their counterparts without nanoparticle reinforcement.  相似文献   

15.
We demonstrate a promising synthesis route based on pulsed laser dewetting of bilayer films (Ag and Co) to make bimetallic nanoparticle arrays. By combining experiment and theory we establish a parameter space for the independent control of composition and diameter for the bimetallic nanoparticles. As a result, physical properties, such as the localized surface plasmon resonance (LSPR), that depend on particle size and composition can be readily tuned over a wavelength range one order of magnitude greater than for pure Ag nanoparticles. The LSPR detection sensitivity of the bimetallic nanoparticles with narrow size distribution was found to be high-comparable with pure Ag (~60 nm/RIU). Moreover, they showed significantly higher long-term environmental stability over pure Ag.  相似文献   

16.
Lin HC  Lin JL  Lin HH  Tsai SW  Yu AL  Chen RL  Chen CH 《Analytical chemistry》2012,84(11):4965-4969
Until now, there have been no relatively easy methods to measure the mass and mass distributions of nanoparticles/viruses. In this work, we report the first set of measurements of mass and mass distributions for nanoparticles/viruses using a novel mass spectrometry technology. In the past, mass spectrometry was typically used to measure the mass of a particle or molecule with a mass less than 1,000,000 Da. We developed cell mass spectrometry that can measure the mass of a cell or a microparticle. Nevertheless, there is a gap for mass measurement methods in the mass region of a nanoparticle or virus (1 MDa to 1 GDa). Here, we developed a nanoparticle/virus mass spectrometry technique to make rapid and accurate mass and mass distribution measurements of nanoparticles/viruses. This technique should be valuable for the quality control of nanoparticle production and the identification of various viruses. In the future, this method can also serve to monitor drug delivery when nanoparticles are used as carriers. Furthermore, it may be possible to measure the degree of infection by measuring the number of viruses in specific cells or in plasma.  相似文献   

17.
Nanoparticle growth in solution is a rather complicated process governed by many thermodynamic and kinetics factors. A better understanding of nanoparticle growth kinetics is of primary importance leading to a better control on the nanoparticle size and size distribution. In this work we conducted both experimental and theoretical study on the kinetics of Brust-Schiffrin reaction for the synthesis of gold nanoparticles. Using an excessive amount of thiol ligands, the nanoparticle growth was stopped at different intermediate stages. Our study revealed and confirmed that the reproducibility of Brust-Schiffrin reaction for the synthesis of gold nanoparticles with diameters around 2 nm is rather poor due to the intrinsic complexity of this two-phase reaction. The analysis results of each intermediate product by TEM showed that nanoparticles grew very rapidly at the early stage of reaction and reached a maximum value of 2.6 nm at reaction time of around 10 minutes. Further increase of reaction time led to a decrease of nanoparticle size. In addition to the experimental study, we proposed a kinetic model for nanoparticle growth in solution by assuming that the nanoparticle core expands through incremental addition of gold atoms to the existing nanoparticle nuclei. This model not only gave a relatively good fitting to the experimental data, but also provided further insight into the nucleation and core expansion stage of the nanoparticle growth, which had not been revealed in previous modeling studies.  相似文献   

18.
A class of core‐shell nanoparticles possessing a layer of biocompatible shell and hydrophobic core with embedded oxygen‐sensitive platinum‐porphyrin (PtTFPP) dyes is developed via a radical‐initiated microemulsion co‐polymerization strategy. The influences of host matrices and the PtTFPP incorporation manner on the photophysical properties and the oxygen‐sensing performance of the nanoparticles are investigated. Self‐loading capability with cells and intracellular‐oxygen‐sensing ability of the as‐prepared nanoparticle probes in the range 0%–20% oxygen concentration are confirmed. Polymeric nanoparticles with optimized formats are characterized by their relatively small diameter (<50 nm), core‐shell structures with biocompatible shells, covalent‐attachment‐imparted leak‐free construction, improved lifetime dynamic range (up to 44 μs), excellent storage stability and photostability, and facile cell uptake. The nanoparticles’ small sensor diameter and core‐shell structure with biocompatible shell make them suitable for intracellular detection applications. For intracellular detection applications, the leak‐free feature of the as‐prepared nanoparticle sensor effectively minimizes potential chemical interferences and cytotoxicity. As a salient feature, improved lifetime dynamic range of the sensor is expected to enable precise oxygen detection and control in specific practical applications in stem‐cell biology and medical research. Such a feature‐packed nanoparticle oxygen sensor may find applications in precise oxygen‐level mapping of living cells and tissue.  相似文献   

19.
Nanometer-sized particles such as semiconductor quantum dots and energy-transfer nanoparticles have novel optical properties such as tunable light emission, signal brightness, and multicolor excitation that are not available from traditional organic dyes and fluorescent proteins. Here we report the use of color-coded nanoparticles and dual-color fluorescence coincidence for real-time detection of single native biomolecules and viruses in a microfluidic channel. Using green and red nanoparticles to simultaneously recognize two binding sites on a single target, we demonstrate that individual molecules of genes, proteins, and intact viruses can be detected and identified in complex mixtures without target amplification or probe/target separation. Real-time coincidence analysis of single-photon events allows rapid detection of bound targets and efficient discrimination of excess unbound probes. Quantitative studies indicate that the counting results are remarkably precise when the total numbers of counted molecules are more than 10. The use of bioconjugated nanoparticle probes for single-molecule detection is expected to have important applications in ultrasensitive molecular diagnostics, bioterrorism agent detection, and real-time imaging and tracking of single-molecule processes inside living cells.  相似文献   

20.
Controlling microdomain structure of block copolymers (BCPs) under electric field has been one of the most challenging research tasks. In this study, we examined the effect of nanoparticles on the microdomain orientations in BCP/nanoparticle thin films under electric field using cross-sectional transmission electron microscopy experiments. Gold and cadmium selenide nanoparticles with a tailored surface property were incorporated to control microdomain orientations in BCP/nanoparticle thin films by varying dielectric constant of one constituting block. It was revealed that the microdomain orientation of BCP/nanoparticle thin films under electric field was suppressed by the introduction of gold nanoparticles. Thus, it can be inferred that gold nanoparticles can show a shielding effect under external electric field. The effect of complementary parameters such as NPs concentration, exposure time, and field strength were also demonstrated. In addition, it was also found that the suppression effect lessened with cadmium selenide nanoparticles having a dipole from the noncentrosymmetric structure. This work can provide fundamental data for understanding of microdomain alignment behavior of BCP/nanoparticle system under electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号