首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
准确地计算电缆载流量,对电缆的安全、稳定运行具有重要意义。然而,当电缆间距离较短时,电缆群间的电磁效应增强,IEC 60287不能给出电缆损耗准确的计算公式,从而使得电缆载流量存在一定的误差。为了准确地计算短间距敷设条件下电缆群的载流量,提出了电缆的电磁-热耦合模型。该模型以110 k V交联聚乙烯电缆为例,利用多物理场耦合分析软件Comsol Multiphysics对不同间距电缆的电磁场和温度场进行了同步耦合计算,并与IEC 60287标准的计算结果比较分析。计算实例表明:基于电磁-热耦合模型的载流量计算结果比IEC 60287准确度更高;当电缆间距较长时,IEC 60287和电磁-热耦合模型计算电缆载流量误差较小;当电缆间距较短时,两种算法计算电缆载流量误差相对比较大。  相似文献   

2.
温度是制约电缆接头载流能力的直接因素,研究接头的温度场分布对实现接头载流能力的准确评估至关重要。论文建立了接头的二维轴向仿真模型,对不同负荷下接头进行温度场仿真分析,并设计了高压电缆接头稳态温升实验,实测了不同负荷下的接头稳态温度分布。最后,应用接头二维轴向仿真模型研究了环境温度、对流换热系数、主绝缘件和保护壳填充胶导热系数变化对接头稳态温度分布的影响,进而提出了电缆全线载流量的提升策略。实验和仿真结果对比表明,不同负荷下接头二维轴向仿真模型对接头导体温度的计算误差绝对值不超过10%。因此,采用接头二维轴向仿真模型计算接头温度场分布能够满足工程应用的需求。  相似文献   

3.
通过稳态热路模型法和有限元法,以常见的单芯和三芯电缆为例,在水平排布和三角形排布的情况下,分别计算铜电缆和铝合金电缆的稳态载流量以及在105℃和130℃时稳态短时过载的载流量,计算等载流量下2种电缆的导体截面积比值。结果表明:2种计算方法的结果比较接近,最大误差不超过7%;相同截面积的铝合金电缆与铜电缆的稳态载流量比值在0.8左右,相同载流量时铝合金电缆与铜电缆导体截面积的比值在1.55左右,导体质量比值在0.47左右,与排布方式、电缆芯数和设定的稳态运行温度无关;同等载流量下铝合金电缆仍然比铜电缆质量更轻、成本更低,铝合金电缆的主要优势体现在提高了安装效率、降低了制造和安装成本等。  相似文献   

4.
冷缩终端已被广泛应用于10 kV交联聚乙烯(XLPE)电缆线路,分析并掌握其运行特性是评估电缆运行状态的重要一环,也是实现电缆线路运行状态检修的基础。为此,设计了电缆温升试验平台,采用1种常用的10 kV XLPE电缆冷缩终端,实测了不同载流量条件下电缆终端单相的热稳态温度分布,依据传热学理论推算出等值的电缆终端护套层导热系数为0.024 W/(m·℃)。并建立了电缆终端单相的传热学数学模型,对理论计算和3维建模仿真结果与试验实测结果进行分析对比。试验结果、理论计算和仿真结果均表明:护套内层和外层的热稳态温度随电缆的载流量增加均呈非线性递增关系,这验证了模型的正确性,因此可使用此模型预测和分析实际10 kV电缆冷缩终端热稳态时的温度分布。  相似文献   

5.
电缆载流量是电力电缆运行中的重要参数。为给敷设于隧道中的超高压电缆运行提供参考,文中根据实际电缆隧道结构和内部电缆排布方式,运用COMSOL Multiphysics仿真软件,建立电缆隧道三维几何模型,进行温度场和流体场的耦合仿真计算。采用有限元法,对不同运行方式和环境条件下的温度场和流体场分布规律进行分析,计算隧道敷设超高压电力电缆载流量。研究表明:最高温度出现在电缆导体处,温度沿着电缆径向逐渐降低,出口截面处的温度和风速相对入口截面处有所增大;随着电流负载增加,电缆发热对周围环境温度的影响也随之增加;双回路和4回路敷设时电缆稳态载流量高于8回路敷设时电缆稳态载流量;电缆表面温度随着通风速率的增加而逐渐减小。  相似文献   

6.
针对输电在线监测系统中电缆温度监测的单一性问题,本文提出了一种基于集中运算的动态增容算法模型。通过将光纤测温与护层电流监测相结合,对实时导体温度与载流量,短时载流量和周期性载流量进行计算。该计算模型能实时分析电缆表面温度的分布数据,发现潜在异常点,实现故障早期预警,而且可动态计算电缆导体温度及允许电流,给输电部门提供电缆短时载流量负荷分析以及周期性载流量的特征分析结果。在确保电缆运行安全的前提下,可实现充分利用电缆输送能力的目标。  相似文献   

7.
通过对交流500 kV XLPE电力电缆各层材料进行导热系数测量实验,测得电缆各层材料导热系数随温度的变化曲线及电缆稳态工作温度下各层材料的热阻系数,并对电缆各层材料的热阻进行归并处理,然后按IEC 60287-1-1:2006对敷设于隧道中的交流500 kV电力电缆建立稳态热路模型并进行分析。结果表明:利用稳态热路模型可计算分析电缆各层热阻、外界环境热阻、电缆损耗及电缆温升等,同时得到大截面、五分裂的交流500 kV电力电缆在最高允许工作温度(90℃)下的载流量I为2 543 A。通过温升实验表明,电缆载流量的理论计算值与实验值的误差可控制在5%以内,验证了该模型对电缆载流量预测的准确性。  相似文献   

8.
电力电缆导体温度可为线路载流量及运行状态的评估提供依据。然而,在当前电缆温度计算中,导体的轴向温度分布通常被忽略,无法准确描述电缆运行的热动态过程。为此,基于热平衡原理,在状态空间内提出了计及轴向传热的中低压单芯电缆导体的温升模型。为克服模型参数难以确定的问题,提出了基于粒子群优化算法的电缆热路参数辨识方法。为验证模型精度,建立了电缆温升实验平台,在不同电流下对空气中敷设电缆进行了轴向温升实验。计算结果与实验结果的对比表明,当电缆存在轴向温度梯度时,所提状态空间模型结果精度高于IEC60287标准模型,能够满足中低压单芯电缆导体在不同电流条件下的轴向温升计算要求。  相似文献   

9.
超高压海底电缆线路跨度大,运行环境复杂多变,不同敷设环境下海底电缆的输送容量也不尽相同,有必要对典型敷设环境下超高压海缆输送载流量进行具体分析。文中基于IEC 60287建立考虑外界敷设环境影响下的500 kV交流交联聚乙烯(XLPE)超高压海底电缆稳态热路模型,分析不同敷设段、不同敷设方式、不同环境温度以及不同埋设深度对海缆载流量的影响规律进行分析,并建立超高压海底电缆磁-热-流多物理场耦合有限元仿真模型对稳态热路模型计算结果进行验证。结果表明:海缆登陆段为整条线路的载流量瓶颈段,当登陆段海缆采用管道敷设时,其载流量要比采用土壤直埋敷设时的载流量降低约150 A,海缆载流量随着外界温度的升高以及土壤埋设深度的增加而逐渐降低。有限元仿真结果验证了文中所建立的热路模型计算结果的准确性。  相似文献   

10.
以电缆温度在线监测为基础,结合实时负荷数据和温度信息,采用有限元方法,对单芯电缆温度场进行分析,实时计算地下电缆的温度场和载流量。该计算方法考虑了外部土壤热阻的实时计算和更新,用环境温度、表面温度和实时负荷来间接计算。实验表明:该方法能准确获取电缆温度场和实时载流量,对提高电缆运行可靠性和输送能力具有重要意义。  相似文献   

11.
针对目前没有成熟的交流电缆中间接头载流量校核方法,搭建了土壤直埋110 kV电缆中间接头和电缆本体稳态载流量三维仿真模型,利用有限元对比研究环境温度、土壤导热系数和敷设深度对电缆中间接头和本体稳态载流量的影响规律。结果表明:在不同环境温度、土壤导热系数和敷设深度下,电缆中间接头载流量始终小于电缆本体载流量,土壤导热系数为0.5 W·(m·K)-1、环境温度为293 K以及敷设深度为1.75 m时的中间接头载流量相较于相同条件下的本体载流量减小了10.8%。因此,如按照电缆本体载流量校核电缆载流能力,将导致中间接头主绝缘处于加速热老化状态。为确保电缆长期稳定运行,建议以本体载流量确定电缆载流时应留有一定裕度。  相似文献   

12.
为实时掌握交联聚乙烯(XLPE)配电电缆的运行状态及其载流量,对电缆线芯温度的计算方法进行了研究。针对配电电缆敷设距离较短的特点建立了单芯电缆集中参数稳态等效热路模型,并推导出线芯温度计算公式,通过实验验证了计算方法的有效性,同时对考虑暂态过程的电缆线芯温度计算方法进行了讨论,为电缆运行状态的在线监测提供了参考。  相似文献   

13.
为实时掌握交联聚乙烯(XLPE)配电电缆的运行状态及其载流量,对电缆线芯温度的计算方法进行了研究。针对配电电缆敷设距离较短的特点建立了单芯电缆集中参数稳态等效热路模型,并推导出线芯温度计算公式,通过实验验证了计算方法的有效性,同时对考虑暂态过程的电缆线芯温度计算方法进行了讨论,为电缆运行状态的在线监测提供参考。  相似文献   

14.
电缆接头线芯温度计算是实现电缆载流量预测重要环节。该文通过三芯电缆接头结构分析其散热路径,进一步考虑了电缆接头的轴向散热,提出了改进的热路模型。以10 kV三芯电缆中间接头为例开展有限元温度场计算,并根据温度-热源的响应实现稳态热路模型的参数辨识。同时,分析了不同电缆电流以及环境散热条件下稳态热路模型的等效性,与有限元仿真结果吻合良好。该模型可以有效提高电缆接头热点计算的效率。  相似文献   

15.
载流量是电缆工程设计和运行的重要参数之一,其值是在负荷电流恒定的条件下得到的。电力系统实际运行时负荷电流通常是周期性变化的。为研究电缆在周期性负荷下的输送能力,本文基于有限差分法编制了电缆暂态温度场数值计算程序,并对直埋电缆进行大电流温升试验,试验结果和数值计算结果吻合。采用该暂态计算程序计算24h周期负荷下缆芯温升,确定周期负荷载流量,对现有的周期负荷载流量解析计算公式进行误差研究,并给出了计算简便的直埋电缆周期性负荷载流量的解析计算公式,提高了解析计算周期性负荷载流量的计算精度。  相似文献   

16.
《电线电缆》2017,(3):5-8
基于IEC 60853的理论基础,减小传统热路模型中用集中性参数代替分布性参数所带来的误差,并充分考虑电缆实际结构中,缓冲层存在一定的空气介质,通过建立改进的热路模型,自行编制计算载流量的应用程序。在计算电缆载流量程序中,将动态的电缆热参数代入计算,减小了利用传统的经验公式和估算值计算各层热参数所引起的误差。为了进一步提高电缆载流量求解精度,利用分布式光纤测温系统(DTS),测量电缆表面温度大小,进而代入程序中求解。该计算程序能够处理各种不同型号的电力电缆,以电缆的实际运行条件为依托,方便了电缆载流量的计算。  相似文献   

17.
在运行过程中,电力电缆中间接头的温度通常会比电缆本体高,基于电缆本体温升不超过90℃而计算得到的稳态载流量会造成中间接头的损坏。对于土壤直埋直流电缆接头,利用有限元仿真软件构建三维模型对温度和载流量计算准确度较高,同时为简化计算过程,利用二维轴对称模块建立了接头的平面结构,并旋转形成中间接头的三维模型。对土壤中电缆接头和本体的温度和稳态载流量进行仿真计算,由本体确定的载流量会使接头导体温度高于最大长期允许温度值,不利于电缆长期稳定运行。水分迁移使接头周围土壤热阻增大,采用回填沙土可在一定程度上提高中间接头的稳态载流量。  相似文献   

18.
研究了某地区电缆隧道内110 kV电缆实际运行情况下,不同排列方式对电缆载流量的影响。通过有限元仿真软件建立了隧道内电缆温度场的三维有限元仿真模型,计算了水平和三角形两种不同排列方式下电缆的温度场分布,对比分析了不同排列方式下的电缆载流量大小,并通过电缆温升实验验证了仿真结果的可靠性。结果表明:两种不同排列方式下电缆载流量大小存在明显差异,水平排列三相电缆载流量明显大于三角形排列,其中水平排列时B相电缆载流量提高5.0%,AC两相电缆载流量提高9.5%。基于以上发现,电缆隧道内高压电缆采用水平排列方式更利于改善电缆的温度场分布和提高电缆的传输功率。  相似文献   

19.
采用Laplace方法的单芯电缆线芯温度动态计算   总被引:6,自引:4,他引:2  
雷鸣  刘刚  赖育庭  刘毅刚 《高电压技术》2010,36(5):1150-1154
电缆线芯温度是电缆安全运行的重要参数。针对电缆线芯温度难于实时监测的问题,结合电缆传热学原理,提出基于电缆实际运行电流和表面温度计算电缆线芯温度的方法。首先建立电缆线芯温度动态计算的热路模型,进一步推导出计算电缆线芯温度的Laplace热路模型;然后剖分连续运行电流为阶跃输入值,并代入基于集中参数法所建立的Laplace热路模型,从而实现连续变化电流作为电缆线芯温度计算的实时输入量。通过试验研究和误差分析,基于电缆表面温度和实际运行电流实时计算线芯温度方法可以满足线芯温度实时监测,进一步研究分析能够实现载流量预测。  相似文献   

20.
《高电压技术》2021,47(6):2117-2123
为了明确不同金属屏蔽形式对高压直流电缆载流量的影响,并对比热分析法和有限元仿真两种理论计算方法结果的准确性,选取导体截面3 000 mm~2的铜芯±525 kV交联聚乙烯(XLPE)绝缘直流电缆,分别通过热分析法和有限元仿真计算皱纹铝套和铜丝屏蔽结构下直流电缆的载流量,并设计直流载流试验对两种电缆样品进行载流量测试。结果表明:相同条件下铜丝屏蔽结构电缆载流量大于皱纹铝套结构,但是两种载流量的理论计算结果均小于试验结果,且存在明显偏差。基于热分析法计算得到的铜丝屏蔽结构电缆在空气中28℃条件下的载流量为2842A,对比有限元仿真结果和试验结果分别偏小7.5%和15.8%;基于热分析法计算得到的相同条件下皱纹铝套结构电缆载流量为2 836 A,对比有限元仿真结果和试验结果分别偏小5.3%和8.6%。造成热分析法计算结果偏小的主要原因在于其仅考虑电缆热传导过程中的热阻影响,无法计算外部空气对流产生的热辐射对载流量的提高,且无法考量电缆结构内部空气对热传导的作用;有限元仿真计算方式在热传导作用之外还具备识别热辐射作用的能力,计算结果更为接近试验结果,差异来源主要为该文所建立的模型未准确表征电缆实际存在的空气隙和皱纹铝套结构,此外有限元仿真计算无法准确模拟实际试验时空气对流产生的电缆表面散热情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号