共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
由于应力约束按单元计,加之多工况,使得连续体结构拓扑优化由于约束数目太多,导致应力敏度分析计算量太大而无法接受。基于第四强度理论提出了应力约束条件全局化处理的方法,化为全局替代约束——总应变能约束,用ICM方法对总应变能约束条件下的连续体结构拓扑优化进行建模及求解,其过程分为三步:第一步选择最大应变能对应的工况,在给定重量下求出最小结构总应变能;第二步提出一个数值经验公式,借助第一步的结果,计算出各工况下的许用总应变能;第三步以第二步计算出来的各工况的许用总应变能作为约束,以重量为目标建立模型并求解。顺便指出,第二步的处理方法可以处理载荷相差特别大的情况,即病态载荷情况。数值算例表明:全局性应力约束可以更好地得到传力路径,对于处理多工况问题具有优势。 相似文献
3.
4.
在连续体结构拓扑优化中,由于载荷通常非常复杂,存在一种类似于结构分析中总刚病态的载荷病态现象。引起载荷病态的原因是由于大多数拓扑优化算法没有考虑大载荷、小载荷间的不同影响,使得小载荷的传力路径在优化过程中消失。该文对载荷病态问题进行了剖析,并将其分为三种情况:1)多工况间有载荷病态,但工况内无载荷病态;2)仅在工况内有载荷病态;3)多工况间有载荷病态,同时某工况内也有载荷病态。为解决载荷病态问题,该文提出了应变能策略,利用应力全局化的ICM方法,逐一采用不同的补充方法解决了上述三种载荷病态问题。对多工况下应力约束的连续体结构拓扑优化问题,应力全局化意指基于第四强度理论将局部性应力约束转化为全局性的应变能约束。数值算例表明:全局性的应变能约束代替局部性应力约束可以更好地得到传力路径,并能更方便地处理各种复杂载荷病态问题。 相似文献
5.
6.
针对仅频率约束和重量最小的结构拓扑优化问题,基于ICM(独立、连续、映射)方法和渐进结构优化方法的思路,提出了一种变频率约束限的结构拓扑优化方法.在优化迭代循环的每一轮子循环迭代求解开始时,为了控制拓扑设计变量的变化量,依据结构频率和其约束限,形成和引进了新的频率约束限.另外,建立了单元删除阈值和几轮迭代循环的单元删除策略.为了确保优化迭代中结构非奇异和方法具有增添单元的功能,在结构孔洞和边界周围引入了一层人工材料单元.结合拉格朗日乘子法,形成了一种新的连续体结构的拓扑优化方法.给出的算例表明该方法没有目标函数的振荡现象,且验证了该方法的正确性和有效性. 相似文献
7.
该文基于独立、连续、映射(independent continuous mapping, ICM)的拓扑优化方法,针对层合板结构频率约束下流固耦合的拓扑优化问题进行了建模与求解。利用格林公式与瑞利商,进行了优化模型频率约束的显式化,并基于泰勒线性近似的方法推导了设计灵敏公式,同时采用对偶序列二次规划求解了该模型。另外,通过引入修正的Heaviside函数对拓扑变量进行了离散化处理。利用PCL(Patran Command Language)二次开发平台对现有MSC.Patran软件进行二次开发,并通过MSC.Nastran软件求解器,实现了优化算法。数值算例证明了该文程序与算法的有效性与可行性。 相似文献
8.
9.
应用ICM(Independent Continuous and Mapping)方法, 建立了以重量最小为目标函数, 以连续频率带或离散点频率的简谐激励下的响应振幅为约束的拓扑优化模型. 引入了对数型Heaviside近似函数作为过滤函数, 并做了敏度分析, 利用对偶二次规划进行优化模型的求解, 并运用敏度过滤的方法处理动力响应数值不稳定的问题. 数值算例比较了利用对数型函数和幂函数作为过滤函数时对拓扑结构的影响, 结果显示利用对数型函数较幂函数结构优化迭代次数更少, 收敛更快. 相似文献
10.
11.
C. S. Jog 《International journal for numerical methods in engineering》2001,50(7):1607-1618
Dual optimization algorithms for the topology optimization of continuum structures in discrete variables are gaining popularity in recent times since, in topology design problems, the number of constraints is small in comparison to the number of design variables. Good topologies can be obtained for the minimum compliance design problem when the perimeter constraint is imposed in addition to the volume constraint. However, when the perimeter constraint is relaxed, the dual algorithm tends to give bad results, even with the use of higher‐order finite element models as we demonstrate in this work. Since, a priori, one does not know what a good value of the perimeter to be specified is, it is essential to have an algorithm which generates good topologies even in the absence of the perimeter constraint. We show how the dual algorithm can be made more robust so that it yields good designs consistently in the absence of the perimeter constraint. In particular, we show that the problem of checkerboarding which is frequently observed with the use of lower‐order finite elements is eliminated. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
12.
C. S. Jog 《International journal for numerical methods in engineering》2002,54(7):1007-1019
Dual optimization algorithms are well suited for the topology design of continuum structures in discrete variables, since in these problems the number of constraints is small in comparison to the number of design variables. The ‘raw’ dual algorithm, which was originally proposed for the minimum compliance design problem, worked well when a perimeter constraint was added in addition to the volume constraint. However, if the perimeter constraint was gradually relaxed by increasing the upper bound on the allowable perimeter, the algorithm tended to behave erratically. Recently, a simple strategy has been suggested which modifies the raw dual algorithm to make it more robust in the absence of the perimeter constraint; in particular the problem of checkerboarding which is frequently observed with the use of lower‐order finite elements is eliminated. In this work, we show how the perimeter constraint can be incorporated in this improved algorithm, so that it not only provides a designer with a control over the topology, but also generates good topologies irrespective of the value of the upper bound on the perimeter. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
13.
Since the elasticity of bi-modulus materials is stress dependent, it is difficult to apply most conventional topology optimization methods to such bi-modulus structures owing to great computational expense. Therefore, this study employs the material-replacement method to improve the computational efficiency for topology optimization of bi-modulus structures. In this method, first, the bi-modulus material is replaced by two isotropic materials which have the same tensile or compressive modulus. Secondly, the isotropic materials for finite elements are determined by the local stress/strain states. The local elemental stiffness can be modified according to the current modulus and stress state of the element. Thirdly, the relative densities of elements, acting as the design variables, are updated using the optimality criterion method. Finally, the distributions of elemental densities and moduli are obtained for further applications. Several typical numerical examples are used to demonstrate the effectiveness of the proposed method. 相似文献
14.
Xueping Li Chuhao Qin Peng Wei Cheng Su 《International journal for numerical methods in engineering》2022,123(1):158-179
Based on the variable density method, this article proposes a boundary density evolutionary topology optimization method. The method uses a material interpolation model without penalization. Combined with the density grading filtering method, an optimal topology with only 0/1 cells can be obtained. Compared with the solid isotropic microstructures with penalization method (SIMP), no penalty factor is required in the material interpolation model; compared with the evolutionary structural optimization method (ESO), intermediate-density elements are allowed in the optimization process, but the concept of gradually removing the low-utilization materials near the boundary in the ESO method is retained. After the optimal result is obtained, the structural boundary element is processed by the level set of nodal strain energy, and the optimization result with smooth boundaries similar to the level set method (LSM) can be obtained. The proposed method has the superiority of the variable density method, and it also combines the advantages of the evolutionary method and the level set method, so which is named as boundary density evolution (BDE) method. The four static and one dynamic optimization examples illustrate the stability and efficiency of the proposed method. 相似文献
15.
16.
屈曲与应力约束下连续体结构的拓扑优化 总被引:1,自引:0,他引:1
基于ICM(独立、连续、映射)方法建立了以结构重量最小为目标,以屈曲临界力、应力同时为约束的连续体拓扑优化模型:采用独立的连续拓扑变量,借助泰勒展式、过滤函数将目标函数作二阶近似展开;借助瑞利商、泰勒展式、过滤函数将屈曲约束化为近似显函数;将应力这种局部性约束采用全局化策略进行处理,即借助第四强度理论、过滤函数将应力局部性约束转化为应变能约束,大大减少了灵敏度分析的计算量;将优化模型转化为对偶规划,减少了设计变量的数目,并利用序列二次规划求解,缩小了模型的求解规模。数值算例表明:该方法可以有效地解决屈曲与应力约束共同作用的连续体拓扑优化问题,能够得到合理的拓扑结构,并有较高的计算效率。 相似文献