首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Gene therapy to correct defective genes requires efficient gene delivery and long-term gene expression. The available vector systems have not allowed the simultaneous achievement of both goals. We have developed a chimeric viral vector system that incorporates favorable aspects of both adenoviral and retroviral vectors. Adenoviral vectors induce target cells to function as transient retroviral producer cells in vivo. The progeny retroviral vector particles are then able to stably transduce neighboring cells. In this system, the nonintegrative adenoviral vector is rendered functionally integrative via the intermediate generation of a retroviral producer cell. The chimeric vectors may allow realization of the requisite goals for specific gene-therapy applications.  相似文献   

2.
3.
Pluripotent hematopoietic stem cells (PHSC) are rare cells capable of multilineage differentiation, long-term reconstituting activity and extensive self-renewal. Such cells are the logical targets for many forms of corrective gene therapy, but are poor targets for retroviral mediated gene transfer owing to their quiescence, as retroviral transduction requires that the target cells be cycling. To try and surmount this problem we have constructed a retroviral producer line that expresses the membrane-bound form of human stem cell factor (SCF) on its cell surface. These cells are capable, therefore, of delivering a growth signal concomitant with recombinant retroviral vector particles. In this report we describe the use of this cell line to transduce a highly quiescent population of cells isolated from adult human bone marrow using the 5-fluorouracil (FU) resistance technique of Berardi et al. Quiescent cells selected using this technique were transduced by cocultivation with retroviral producers expressing surface bound SCF or with the parent cell line that does not. Following coculture, the cells were plated in long-term bone marrow culture for a further 5 weeks, before plating the nonadherent cells in semisolid media. Colonies forming in the semisolid media over the next 14 days were analyzed by polymerase chain reaction for the presence of the retroviral vector genome. Over six experiments, the transduction frequency of the quiescent 5-FU resistant cells using the SCF-expressing producer line averaged about 20%, whereas those transduced using the parent producer line showed evidence of reduced levels or no transduction.  相似文献   

4.
In preparation for foetal gene therapy by intra-amniotic gene application, we have investigated the effect of amniotic fluid on several gene transfer systems. In vitro lipofection of embryonically derived 3T3 cells by several of the tested cationic lipids decreases in the presence of human amniotic fluid, while two formulations, Lipid 67 and Tfx-50, remain highly active. As some body fluids are known to inactivate most retroviral vectors, we investigated the influence of amniotic fluid on the efficiency of infection of 3T3 cells by murine leukaemia virus (MoMLV)-based vectors, including amphotropic and ecotropic retrovirus, and a vesicular stomatitis virus G (VSV-G) glycoprotein pseudotyped retroviral vector. All showed a decrease of infectivity from 21 to 56% in the presence of amniotic fluid. The ecotropic retrovirus is the most infectious under normal conditions as well as in amniotic fluid. Our results suggest that intra-amniotic injection may allow efficient gene transfer using either amniotic fluid-resistant cationic lipids or ecotropic retroviral vectors in a murine in vivo model for foetal gene therapy. The VSV-G-pseudotyped vector, although displaying a decrease of infectivity, remains of great interest for gene delivery, because of its broad host range and because of the high virus titers achievable. Finally, a baculovirus-based vector shows no decrease of its infectivity and does not seem to be affected by amniotic fluid but has only low infectivity on the tested foetal fibroblast cell line.  相似文献   

5.
The coordinate expression of a marker gene and a therapeutic gene in one retroviral vector has considerable advantages. High-titer producer lines can potentially be selected on the basis of marker gene expression, and the expression of transduced genes in target cells can readily be followed. Moreover, target cells with stable high expression can be selected before use in therapeutic protocols or research questions. We used internal ribosomal entry site (IRES) sequences to express two genes in the same retroviral vector. We used the LacZ gene as the marker gene and the cytokine interleukin (IL)-7 or dominant negative (dn) forms of the T-cell tyrosine kinases ZAP-70 and lck as genes of interest. Amphotropic packaging cells transfected with MFG-IL-7-IRES-LacZ, MFG-dnZAP-70-IRES-LacZ, or MFG-dnlck-IRES-LacZ were sorted on the basis of beta-galactosidase expression. These LacZ-positive producer cells also expressed the gene of interest, produced high-titer retrovirus, and were capable of efficiently transducing Jurkat T cells and T-cell clones. When MFG-IL-7-IRES-LacZ-transduced Jurkat T cells were sorted on the basis of LacZ expression, a positive correlation with the amount of IL-7 produced by these cells was found. This demonstrates that selection of the LacZ marker gene also selects for cells that express the gene of interest at high levels. Moreover, T cells transduced with the dn tyrosine kinases and selected on the basis of LacZ expression showed functional alterations after T-cell receptor stimulation, demonstrating that retrovirally transduced signaling molecules can alter the function of T cells.  相似文献   

6.
Previous studies in rodent models have demonstrated the feasibility of gene transfer to the stem cells of the intestinal epithelium using ecotropic retroviral vectors delivered luminally. This report represents a next step toward targeting the human intestine as a site for somatic gene therapy. The first experiment assessed the viability of amphotropic retroviral vectors in the luminal environment. It was found that after 4 hr at 37 degrees C in luminal effluent, the loss of titer was no greater than when incubated in control media. Likewise, neither the vector nor the target cells were adversely affected by N-acetylcysteine, which is likely to be used as a preparatory agent for mucus removal. To determine whether human intestinal cells are transducible by these vectors, three colon carcinoma cell lines were studied: HT-29, T84, and Caco-2. All were transduced; however, the expression of the reporter gene was highest in the HT-29 cells. Subsequent studies using these cells showed that with regular stocks of vector, gene transfer peaked at a stock dilution of 1/10 and declined at full strength. This problem could be partially overcome by centrifugal concentration of the retroviral stocks. With this approach, gene transfer increased with increasing particles up to 10x regular stock titers but was inefficient at 100x. Overall, these findings provide encouraging evidence that amphotropic retroviral vectors may eventually be used for in vivo gene transfer into human intestinal epithelium. However, they also point to the need for improved methods of concentrating retroviral vectors.  相似文献   

7.
Genetically modified lymphocytes have been successfully used for correction of ADA deficiency in children and in controlling graft-versus-host disease (GvHD) after allogeneic bone marrow transplantation. Low transduction efficiencies are, however, limiting for gene therapeutic strategies based on lymphocytes. In this study we compared protocols for highly efficient gene transfer into human T cells using retroviral vector-containing supernatant. We showed that infection of both human primary T cells and CD4+ Jurkat cells is most efficient on the matrix component fibronectin. Transduction was carried out with a retroviral vector encoding both the human intracytoplasmatically truncated low-affinity nerve growth factor receptor (deltaLNGFR) as a gene transfer marker and the Herpes simplex virus thymidine kinase for negative selection. Based on LNGFR expression genetically modified cells were enriched to near purity by magnetic cell sorting (MACS). Enriched cells could be shown to be highly sensitive to ganciclovir.  相似文献   

8.
CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.  相似文献   

9.
Hurler syndrome (mucopolysaccharidosis IH or MPS IH) is a congenital mucopolysaccharide storage disorder resulting from a genetic deficiency of alpha-L-iduronidase (IDUA), which is required for lysosomal degradation of glycosaminoglycans heparan sulfate and dermatan sulfate. Even though histocompatible bone marrow transplantation has been applied for the treatment of Hurler syndrome, gene therapy via autologous bone marrow transplantation (BMT) may be more beneficial for this disease. Two retroviral vectors containing a full-length human IDUA cDNA were constructed using Moloney murine leukemia virus (MoMLV)-based vector backbones. High-titer vector-producing clones containing the L-HuID-SN and MFG-HuID retroviral vectors were established. The efficiency of gene transfer into primitive human CD34+ hematopoietic cells using both retroviral vectors is in the range of 18-23%. The level of enzyme expression in transduced primary bone marrow cells was increased 40- to 50-fold compared with that of sham-transduced cells. Enzyme produced by the progeny of the transduced human CD34+ cells carrying IDUA cDNA corrected Hurler fibroblasts via mannose-6-phosphate receptors. These findings suggest that genetically modified hematopoietic progenitor cells can potentially be useful for gene therapy of Hurler syndrome.  相似文献   

10.
The majority of gene therapy protocols have used or plan to use retroviral vectors based upon murine leukaemia virus. These vectors are able to infect many different cell types, and the retroviral promoter, which is often used to control the expression of a therapeutic gene, is active in a wide range of different cell types. Safe and efficient gene transfer systems, whether based upon retroviruses or other agents, should deliver beneficial genes only to cells that require their therapeutic action, and these genes ideally should be expressed exclusively in such cells. In this paper, strategies for redirecting the infection spectrum of retroviral vectors in order to obtain cell-targeted gene delivery are discussed. These strategies include the engineering of the retroviral envelope protein, which, together with the availability of its cognate receptor, determines infectivity, and the use of proteins from other enveloped viruses of both retroviral and nonretroviral origin in the cell lines used to produce retroviral vector virus particles. Expression targeting can be achieved by limiting the expression of therapeutic genes to the cell type(s) of interest using promoters from genes that are normally active in these cells. This approach to targeting is illustrated using promoters from genes expressed in either the liver, the pancreas or the mammary gland as a means to limit gene expression specifically to the cell types that make up these organs. The successful utilization of new generations of targeted retroviral vectors in the clinic may well pave the way for superior gene delivery systems of the future that seek out their target cell, delivering a therapeutic gene to and expressing it only in such cells.  相似文献   

11.
The tumor vasculature offers a target for anti-cancer gene therapy which has the advantages both of good accessibility to systemically delivered therapy and comparative homogeneity across solid tumor types. We aimed to develop retroviruses carrying endothelial-specific promoters for the delivery of genes to proliferating endothelial cells in vitro and to tumor endothelial cells in vivo. This paper reports the generation of such retroviral vectors and the level of expression of murine tumor necrosis factor-alpha (mTNF-alpha) cDNA following infection into endothelial cells and stromal fibroblasts. Retroviral vectors carrying mTNF-alpha have been generated whose expression is controlled either by the retroviral long terminal repeat or by 5' proximal promoter sequences from the endothelial-specific kinase insert domain receptor (KDR)/VEGF receptor and E-Selectin promoters within the context of a self-inactivating (SIN) vector backbone. Both KDR and E-Selectin have been shown to be upregulated on tumor endothelium. A putative polyadenylation sequence AAATAAA within the E-Selectin promoter was mutated to permit faithful transmission of retroviral vectors carrying this promoter. We demonstrate a 10- to 11-fold increase in mTNF-alpha expression from promoter elements within sEND endothelioma cells as compared to NIH-3T3 fibroblasts. Suggestions for further improvements in vector design are discussed.  相似文献   

12.
Successful retroviral gene transfer into human hematopoietic stem cells was demonstrated in preliminary clinical trials at low efficiency. We have shown previously that gene transfer into committed hematopoietic progenitor cells is more efficient using a gibbon ape leukemia virus (GALV)-pseudotyped retroviral vector instead of an amphotropic retroviral vector. Here, we have conducted a systematic study of human hematopoietic progenitor cells after extended transduction with a GALV-pseudotyped retroviral vector. CD34+/CD38lo Cells were transduced for 5 days and reselected according to phenotype after culture and analyzed for cell cycle status, long-term culture-initiating cell (LTC-IC) activity, and gene transfer. Reselection of rare, very primitive progenitor cells was successful. Equal to fresh CD34+/CD38lo cells, >90% of reselected CD34+/CD38lo cells were in G0/G1. CD34+/CD38lo reselection enriched for LTC-IC (10-fold), as compared to freshly isolated CD34+/CD38lo cells with excellent specificity (82.7% of total LTC-IC were recovered in the reselected CD34+/CD38lo population) and recovery (62% of initial LTC-IC number in CD34+/CD38lo cells were recovered in the reselected fraction after transduction). Gene transfer into primitive progenitor cells was efficient with 50.5% G418-resistant LTC-IC colonies and more than 40 copies of vector provirus detectable per 100 nuclei of CD34+/CD38lo cells. To our knowledge, this is the first systematic analysis of phenotype, function, and cell cycle demonstrating retroviral gene transfer into rare, very primitive human hematopoietic progenitor cells. The chosen strategy should be of considerable value for analyzing and improving gene therapy of the hematopoietic system.  相似文献   

13.
We have investigated the feasibility of using high-titer murine leukemia virus-based retroviral vectors to deliver exogenous genes to naive and chronically inflamed knee joints of rabbits in vivo. Intraarticular injection of retrovirus encoding beta-galactosidase (beta-gal or lacZ) was found to transduce synoviocytes in both naive and inflamed joints, but a significantly higher number of lacZ+ cells were found in inflamed knees. Using a retrovirus encoding a secretable marker, human growth hormone (hGH), quantitative comparison of ex vivo and in vivo gene delivery methods demonstrated that transgene expression following in vivo gene transfer was at least equivalent to that of the ex vivo method in inflamed knees. In addition, hGH transgene expression was maintained for at least 4 weeks. These experiments suggest that high-titer retroviral vector could be used for efficient in vivo gene transfer to inflamed joints in patients with rheumatoid arthritis (RA).  相似文献   

14.
Chemoresistance gene transfer is an experimental method to protect hematopoietic cells from the toxicity of anticancer drugs. Because multiple drugs are usually given together in cancer therapy, this strategy will ultimately require vectors expressing multiple chemoresistance genes. For this reason, we designed a bicistronic retroviral vector (HaMID) containing a modified human multidrug resistance-1 cDNA and a mutant human dihydrofolate reductase cDNA bearing a leucine to tyrosine substitution at codon 22 (L22Y). To determine if this vector would confer dual drug resistance to hematopoietic cells, recombinant retrovirus was used to transduce the human CEM T lymphoblastic cell line as well as primary murine myeloid progenitors. Growth suppression assays, using polyclonal transduced CEM cells, demonstrated increased resistance to taxol (13-fold), trimetrexate (8.9-fold), vinblastine (5.6-fold), methotrexate (2.5-fold), and etoposide (1.5-fold) when used as single agents. HaMID-transduced cells also grew at a logarithmic rate in the simultaneous presence of 25 nM taxol and 100 nM trimetrexate while control cells were entirely growth inhibited by this drug combination. Similarly, HaMID-transduced murine myeloid progenitors acquired increased resistance to taxol (2.9-fold) and trimetrexate (140-fold), and were able to form colonies in the simultaneous presence of both drugs. Our results suggest that retroviral transfer of HaMID into primary hematopoietic cells should reduce the myelosuppression associated with the combined use of antifolates and P-glycoprotein-effluxed drugs.  相似文献   

15.
cDNA expression cloning is a powerful method for the rescue and identification of genes that are able to confer a readily identifiable phenotype on specific cell types. Retroviral vectors provide several advantages over DNA-mediated gene transfer for the introduction of expression libraries into eukaryotic cells since they can be used to express genes in a wide range of cell types, including those that form important experimental systems such as the hemopoietic system. We describe here a straightforward and efficient method for generating expression libraries by using a murine retroviral vector. Essentially, the method involves the directional cloning of cDNA into the retroviral vector and the generation of pools of stable ecotropic virus producing cells from this DNA. The cells so derived constitute the library, and the virus they yield is used to infect appropriate target cells for subsequent functional screening. We have demonstrated the feasibility of this procedure by constructing several large retroviral libraries (10(5) to 10(6) individual clones) and then using one of these libraries to isolate cDNAs for interleukin-3 and granulocyte-macrophage colony-stimulating factor on the basis of the ability of these factors to confer autonomous growth on the factor-dependent hemopoietic cell line FDC-P1. Moreover, the frequency at which these factor-independent clones were isolated approximated the frequency at which they were represented in the original plasmid library. These results suggest that expression cloning with retroviruses is a practical and efficient procedure and should be a valuable method for the isolation of important regulatory genes.  相似文献   

16.
Human cord blood (CB) contains large numbers of both committed and primitive hematopoietic progenitor cells and has been shown to have the capacity to reconstitute the lympho-hematopoietic system in transplant protocols. To investigate the potential usefulness of CB stem and progenitor cell populations to deliver new genetic material into the blood and immune systems, we have transduced these cells using retroviral technology and compared the efficiency of gene transfer into CB cells with normal adult human bone marrow cells using a variety of infection protocols. Using two retroviral vectors which differ significantly in both recombinant viral titers and vector design, low density CB or adult bone marrow (ABM) cells were infected, and committed progenitor and more primitive hematopoietic cells were analyzed for gene expression by G418 drug resistance (G418r) of neophosphotransferase and protein analysis for murine adenosine deaminase (mADA). Standard methylcellulose progenitor assays were used to quantitate transduction efficiency of committed progenitor cells, and the long term culture-initiating cell (LTC-IC) assay was used to quantitate transduction efficiency of more primitive cells. Our results indicate that CB cells were more efficiently transduced via retroviral-mediated gene transfer as compared with ABM-derived cells. In addition, stable expression of the introduced gene sequences, including the ADA cDNA, was demonstrated in the progeny of infected LTC-ICs after 5 wk in long-term marrow cultures. Expression of the introduced ADA cDNA was higher than the endogenous human ADA gene in the LTC-IC-derived colonies examined. These studies demonstrate that CB progenitor and stem cells can be efficiently infected using retroviral vectors and suggest that CB cells may provide a suitable target population in gene transfer protocols for some genetic diseases.  相似文献   

17.
The transfer of alpha/beta T cell receptor (TCR) genes into T lymphocytes or their precursors could provide a means to increase frequency of tumor- or pathogen-specific cytotoxic T lymphocytes. To begin to address this possibility, we have used class I MHC-restricted alpha/beta TCR cDNAs to develop a retroviral TCR expression vector. Alpha- and beta-chain cDNAs were inserted into a derivative of the LN series of retroviral vectors, with the retroviral LTR directing expression of TCR-beta and an internal cytomegalovirus promoter/enhancer driving TCR-alpha expression. The variable region fragments can be replaced using unique restriction sites that have been introduced into the proximal constant regions. We have used this vector system to transfer two different pairs of alpha/beta TCR genes into an alpha- and beta-chain-deficient T cell hybridoma. TCR- hybridoma cells were transduced by coculture with pools of virus-producing cells, and fluorescence-activated cell sorting was used to enrich for cells expressing the transduced TCR. Transduction with either alpha/beta TCR restores stable, long-lived expression of the alpha/beta TCR complex. TCR-mediated signal transduction is also reconstituted, as demonstrated by the ability of transduced cells to secrete IL-2 following stimulation with Vbeta-specific antibodies. Our results suggest that alpha/beta T cell receptor gene transfer could provide a basis for new approaches to immunotherapy, and that further studies examining the in vivo fate of transduced TCR are possible.  相似文献   

18.
Replication-incompetent recombinant retroviruses are currently used for gene delivery. The limited efficiency of gene transfer using these vectors hampers implementation of gene therapy. Successful integration of Moloney murine leukemia virus (MMuLV)-derived retroviral vectors into the host cell DNA requires cell division. The time difference between virus entry and cell division is variable and prolonged in slowly dividing cells. Therefore, the rate of intracellular decay of internalized vectors between the time of entry into the target cell and cell division may limit the probability of successful integration following viral entry. We present two methods that measure the intracellular stability of MMuLV-derived retroviral vectors in NIH 3T3 cells. The first is based on a temporary interruption of cell cycle progression by using cell detachment. This method provides an estimate, but not a direct measurement, of the half-life. The results show that the MMuLV intracellular half-life is on the order of but shorter than the total cell cycle time. The second method allows the direct measurement of the intracellular half-life by using two cell cycle-specific labels: 5-bromodeoxyuridine, a thymidine analog that labels cells in S-phase; and the viral vector that labels cells in mitosis. By varying the time between the administration of the two labels, the intracellular half-life is measured to be in the range of 5.5 to 7.5 h. Such a short intracellular half-life may restrict the efficiency of gene transfer by retroviral vectors, particularly in slowly dividing target cells.  相似文献   

19.
The internal ribosome entry site (IRES) from the picornavirus family has frequently been used to express multiple genes from a polycistronic message in retroviral vectors. While examining factors affecting levels of gene expression in IRES-containing retroviral vectors, it was found that retroviral vectors expressing the two genes linked by IRES, the reporter gene and the selectable marker neo, produced significantly lower levels of protein than those containing a reporter gene alone. This observation has been made with various cDNA sequences. However, when the neo was replaced with a different cDNA, the level of gene expression was increased, often to the level achieved with a vector expressing a single gene, suggesting that the bacterial neo sequence has a negative effect on expression. Analysis of the steady-state RNA levels isolated from transfected packaging cells showed that the neo-containing retroviral vectors produced significantly lower levels of RNA than those lacking this bacterial sequence indicating that neo interferes with expression of the neighboring gene at the level of RNA. Furthermore, the order of genes in the IRES-neo-containing vectors appeared to be more important than in the vector lacking the neo sequence. Our results suggest that neo has to be used in the retroviral vector with care, especially when a high level gene expression is needed.  相似文献   

20.
Gene transfer with vectors derived from murine retroviruses is restricted to cells which are proliferating and synthesizing DNA at the time of infection. This suggests that retroviral-mediated gene transfer might permit targeting of gene integration into malignant cells in organs composed mainly of quiescent nonproliferating cells, such as in the brain. Accordingly, selective introduction of genes encoding for susceptibility to otherwise nontoxic drugs ("suicide" genes) into proliferating brain tumors may be used to treat this cancer. We investigated the efficacy and dynamics of in vivo transduction of growing brain tumors with the herpes simplex-thymidine kinase gene followed by administration of the antiviral drug ganciclovir. Ganciclovir is phosphorylated by thymidine kinase to toxic triphosphates that interfere with DNA synthesis, resulting in the preferential death of the transduced tumor cells. Rats inoculated with 4 x 10(4) 9L gliosarcoma cells into the frontal lobe were treated 7 days later with an intratumoral stereotaxic injection of murine fibroblasts (NIH 3T3 cells) that were producing a retroviral vector containing the herpes simplex-thymidine kinase gene. Controls received vector producer and nonproducer NIH 3T3 cell lines containing the Escherichia coli lacZ (beta-galactosidase) gene as well as nonproducer NIH 3T3 cells containing the thymidine kinase gene. The animals were rested for 7 days to allow time for in situ transduction of the proliferating tumor cells with the herpes-thymidine kinase retroviral vector. The animals were then treated with ganciclovir, 15 mg/kg i.p. twice a day for 14 days. Gliomas receiving an injection of 3-5 x 10(6) thymidine kinase producer cells regressed completely in 23 of 30 rats given ganciclovir therapy, while 25 of 26 control rats developed large tumors. Intratumoral injection of a lower concentration of thymidine kinase vector producer cells (1.8 x 10(6)) resulted in a lower frequency of tumor regression (5 of 13 rats). To estimate the efficiency of in vivo gene transfer, 9L brain tumors were given injections of 5 x 10(6) beta-galactosidase vector producer cells. 5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranaside staining revealed maximal staining of beta-galactosidase within the tumor 7-14 days after injection of the vector producer cells. In vivo transduction rates in harvested tumors ranged from 10 to 70%. There was no evidence of transduction of the surrounding normal neural tissue. Occasional blood vessel endothelial cells within or adjacent to the tumor were observed to be 5-bromo-4- chloro-3-indolyl-beta-D-galactopyranaside positive.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号