首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cognitive Radio has been one of the key research topics in the wireless community for about 10 years. The digital switch-over in the TV bands provides opportunities for Cognitive Radio Systems (CRS) to operate in the 470–790 MHz spectrum under incumbent protection restrictions. Locally unused spectrum in this band is often referred to as TV whitespace (TVWS). Regulatory bodies, in particular the US Federal Communications Commission (FCC) and Ofcom in the UK, have specified parameters under which CRS shall operate. In this paper we analyse key scenarios for CRS stemming from the QoSMOS project. We then analyse how these scenarios can be mapped into the TV whitespace (TVWS) context by considering link budget computation based on FCC and Ofcom transmit power recommendations plus statistical propagation models for the UHF band. We also consider the expected capacity which can be achieved when using TVWS as a capacity extension in an LTE network. We also show how cognitive femtocells can be used to provide outdoor coverage when deployment is based on random location. We eventually conclude on the most promising scenarios in the context of the TVWS usage.  相似文献   

2.
This paper proposes an IEEE 802.15.4m compliant TV white-space orthogonal frequency-division multiplexing (TVWS)-(OFDM) radio frequency (RF) transceiver that can be adopted in advanced metering infrastructures, universal remote controllers, smart factories, consumer electronics, and other areas. The proposed TVWS-OFDM RF transceiver consists of a receiver, a transmitter, a 25% duty-cycle local oscillator generator, and a delta-sigma fractional-N phase-locked loop. In the TV band from 470 MHz to 698 MHz, the highly linear RF transmitter protects the occupied TV signals, and the high-Q filtering RF receiver is tolerable to in-band interferers as strong as −20 dBm at a 3-MHz offset. The proposed TVWS-OFDM RF transceiver is fabricated using a 0.13-μm CMOS process, and consumes 47 mA in the Tx mode and 35 mA in the Rx mode. The fabricated chip shows a Tx average power of 0 dBm with an error-vector-magnitude of < 3%, and a sensitivity level of −103 dBm with a packet-error-rate of < 3%. Using the implemented TVWS-OFDM modules, a public demonstration of electricity metering was successfully carried out.  相似文献   

3.
With rapid increase in new applications and services, there is huge demand for internet bandwidth. Several researchers around the world have found that, majority of licensed bands (mostly terrestrial TV band) are either unused or underused. These underutilized bands allocated for TV transmission are known as TV white space (TVWS). For effective utilization of TVWS, the IEEE 802.22 is proposed. The IEEE 802.22 wireless regional area network (WRAN) is the latest standard for effective utilization of TV bands. This standard is based on orthogonal frequency division multiplexing with various modulation techniques to provide different data rates. In this paper, an implementation framework for physical layer of IEEE 802.22 WRAN standard for normal mode is demonstrated and analyzed. This transceiver is implemented using the National Instruments Laboratory Virtual Instrument Engineering Workbench programming software on the National Instruments universal software radio peripheral 2952R. We have also analyzed different blocks of IEEE 802.22 based on their execution time, and identify the critical blocks of IEEE 802.22 that should be optimized for real-time applications for commercial product development and field deployments. We have also highlighted the difference between theoretical and practical performance of the considered error control codes for IEEE 802.22 specified block size. Additionally, various covariance based spectrum sensing methods are also analyzed for real-world environment.  相似文献   

4.
向玉  周坤  杨柳  潘蕾  廖振万  张强 《光电子快报》2015,11(6):444-448
In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple-frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.  相似文献   

5.
This paper presents a set of candidate regulatory requirements for TV band devices (TVBDs) in the Rep. of Korea. To guarantee the protection of incumbent services, especially digital TV (DTV) and wireless microphones, in TV frequency bands, we suggest minimum separation distances of TVBDs from the noise‐limited contour according to incumbent users and TVBD types. This paper also deals with multiple sets of separation distances of a co‐channel TVBD network from a DTV protected contour on the basis of the radio propagation characteristics of different geographic areas to make good use of TV white space (TVWS) and safely protect the DTV service. We present a low‐power transmission mode of TVBDs and the relevant separation distances for small‐cell deployment. The service coverage reduction ratio of a TVBD network is investigated in the presence of DTV interference in four geographic areas. The TVWS field verification results, conducted on the island of Jeju (Rep. of Korea), show that incumbent services operate well without harmful interference from neighboring TVBDs with the proposed separation distances.  相似文献   

6.
A compact ultra-wideband (UWB) bandpass filter (BPF) with notched band has been proposed and implemented in this letter. H-shaped slot is studied and adopted to tighten the coupling of inter-digital capacitor in order to improve the BPF's performance. Three pairs of tapered defected ground structures (DGS) are formed to assign their transmission zeros towards the out of band signal, thereby suppressing the spurious passband. Combining these two structures we obtain a small sized UWB BPF. Meander line slot is developed to reject the undesired wireless local-area network (WLAN) radio signals. An experimental UWB filter with notched band was fabricated with 35% less length as compared to an embedded open-circuited stub. The measured BPF insertion loss is less than 1.0 dB throughout the pass band of 2.8 to 10.8 GHz, the variation of group delay less than 0.20 ns in this band except for the notched band, and a wide stopband bandwidth with 20 dB attenuation up to at least 20.0 GHz.  相似文献   

7.
针对超宽带(UWB)系统易受无线网络信号干扰及传统的超宽带带通滤波器阻带较窄,不能有效抑制谐波的问题,提出了一种新型的UWB带通滤波器,该滤波器由两级交指梳状耦合谐振器级联组成,通过增加耦合指的个数来实现陷波特性,然后在两个交指谐振器的中间添加一个槽线锥形谐振器,使该滤波器具有抑制高次谐波特性,达到拓宽高阻带的效果,同时由于槽线谐振器的加入,陷波频段的抑制电平进一步提高.实验结果证明,所设计的滤波器既能保证3.1~10.6 GHz频段内的插入损耗小于3 dB,陷波频段为5.7~5.8 GHz,陷波频段的抑制电平高达-43 dB,同时又能拓宽高频阻带.  相似文献   

8.
Radio frequency (RF) subsampling can be used by radio receivers to directly down‐convert and digitize RF signals. A goal of a cognitive radio/software defined ratio (CR/SDR) receiver design is to place the analog‐to‐digital converter (ADC) as near the antenna as possible. Based on this, a band‐pass sampling (BPS) frontend for CR/SDR is proposed and verified. We present a receiver architecture based second‐order BPS and signal processing techniques for a digital RF frontend. This paper is focused on the benefits of the second‐order BPS architecture in spectrum sensing over a wide frequency band range and in multiband receiving without modification of the RF hardware. Methods to manipulate the spectra are described, and reconstruction filter designs are provided. On the basis of this concept, second‐order BPS frontends for CR/SDR systems are designed and verified using a hardware platform.  相似文献   

9.
Subcarrier multiplexed transmission of multimedia radio signals over fiber is often done to deliver broadband services cost effectively. These signals need to be demultiplexed, preferably in the optical domain, to avoid loss and noise due to optical-to-electrical conversion. However, it is challenging to optically isolate signals at subgigahertz range due to the need for very narrow optical bandpass filters with high selectivity and low insertion loss and distortion. We developed such a novel subpicometer all-optical bandpass filter by creating a resonance cavity using two closely matched fiber Bragg gratings. This filter has a bandwidth of 120 MHz at -3 dB, 360 MHz at -10 dB, and 1.5 GHz at -20 dB. Experimental results show that this filter optically separates two RF signals spaced as close as 50 MHz without significant distortion. This paper analytically and experimentally investigates the scenario when this filter was used with 2.4-GHz (wireless local area network) and 900-MHz (cellular wireless) radio signals. The bit-error rate of the underlying baseband data is related to the linearity and isolation of the filter.  相似文献   

10.
Compact dual-band bandpass filter (BPF) for the 5th generation mobile communication technology (5G) radio frequency (RF) front-end applications was presented based on multilayer stepped impedance resonators (SIRs). The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros (TZs) near the passband edges by the quarter-wavelength tri-section SIRs. The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm ×5.0 mm ×1.2 mm. The measured two passbands of themultilayer dual-band SIR BPF are 3.3 GHz -3.5 GHz and 4.8 GHz -5.0 GHz with insertion loss (IL) less than 2 dB respectively. Both measured and simulated results suggest that it is a possible candidate for the application of 5G RF front-end at sub-6 GHz frequency band.  相似文献   

11.
黄磊  余平  鲍景富  袁田 《通信技术》2012,(11):8-10,13
针对便携式跳频电台,设计了一种收发链路复用的收发信机射频前端。该收发信机射频前端可以提高抗干扰能力,达到降低功耗、减小设备体积的目的。详细介绍了收发信机射频前端的设计链路和硬件电路实现,设计中收发链路均采用二次变频结构,输出和输入频率在110~512 MHz之间连续可变。最后,对射频前端进行性能测试,测试结果表明所设计的射频前端实现了低相噪、低杂散、带内波动小和高速跳频等指标。  相似文献   

12.
Multistandard channelisation for base stations is a big application of generalised discrete Fourier transform modulated filter banks (GDFT‐FBs) in digital communications. For technologies such as software‐defined radio and cognitive radio, nonuniform channelisers must be used if frequency bands are shared by different standards. However, GDFT‐FB‐based nonuniform channelisers can suffer from high filter orders when applied to wideband input signals. In this paper, various combinations of GDFT‐FB with the frequency response masking technique are proposed and evaluated for both uniform and nonuniform channelisation applications. Results show that the proposed techniques achieve savings in both the number of filter coefficients and the number of operations per input sample. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Simulation results of a 863-870 MHz frequency-hopped spread-spectrum (FHSS) transceiver with binary frequency shift keying (BFSK) modulation at 20 kb/s for wireless sensor applications is presented.The transmit/receive RF front end contains a BFSK modulator, an upconversion mixer, a power amplifier (PA), and an 863-870 MHz band pass filter (BPF) at the transmitter side and a low-noise amplifier with down conversion mixer to zero-IF, a low-pass channel-select filter, a limiter and a BFSK demodulator at the receiver side. The various block parameters of the transmit/receive RF front end like noise figure (NF), gain, 1 dB compression point (P-1 dB), and IIP3 are simulated and optimized to meet low power and low cost transceiver specifications.The transmitter simulations show an output ACPR (adjacent channel power ratio) of −22 dBc, 3.3 dBm P-1 dB of PA, and transmitted power of 0 dBm. The receiver simulations show 51.1 dB conversion gain, −7 dBm IIP3, −15 dB return loss (S11), and 10 dB NF. Low power arctangent-differentiated BFSK demodulator has been chosen and the BER performance has been co simulated with the analog receiver. The complete receiver achieves a BER of 10−3 at 10.5 dB of EbtoNo. The transceiver simulations show an RMS frequency error of 1.45 kHz.  相似文献   

14.
A novel reconfigurable frequency translating antenna for cost-effective wireless transceiver applications is described. The integration of a dual transistor sub-harmonic mixing topology with a five-patch series arrangement enables the system to operate in resistive mode for reception or in active mode for transmission. The printed structure behaves as an antenna in the 1850 MHz frequency band and as a stepped-impedance lowpass filter. This avoids undesired radiation of the LO component and allows IF signal extraction in the down converting mode. Measured isotropic conversion gain (4.47 and 19.3 dB) supports the validity of the proposed solution in low-cost compact wireless transceiver applications.  相似文献   

15.
This paper outlines the time jitter effect of a sampling clock on a software‐defined radio technology‐based digital intermediate frequency (IF) transceiver for a mobile communication base station. The implemented digital IF transceiver is reconfigurable to high‐speed data packet access (HSDPA) and three bandwidth profiles: 1.75 MHz, 3.5 MHz, and 7 MHz, each incorporating the IEEE 802.16d worldwide interoperability for microwave access (WiMAX) standard. This paper examines the relationship between the signal‐to‐noise ratio (SNR) characteristics of a digital IF transceiver with an under‐sampling scheme and the sampling jitter effect on a multichannel orthogonal frequency‐division multiplexing (OFDM) signal. The simulation and experimental results show that the SNR of the OFDM system with narrower band profiles is more susceptible to sampling clock jitter than systems with relatively wider band profiles. Further, for systems with a comparable bandwidth, HSDPA outperforms WiMAX, for example, a 5 dB error vector magnitude improvement at 15 picoseconds time jitter for a bandwidth of WiMAX 3.5 MHz profile.  相似文献   

16.
为实现低功耗信号传输,提出一种基于OFDM的IEEE 802.15.4g低功耗无线电频率(RF)收发器。该新型RF收发器电路由Tx BBA(基带模拟)、片上RF开关前端、Rx BBA及锁相环(PLL)构成,采用0.18?m CMOS技术制作,满足了IEEE 802.15.4g OFDM系统低功耗信号传输的需要。实际测试结果显示,相比传统的RF收发器,提出的RF收发器具有较低的功耗和良好的灵敏度,当电源电压为1.8 V时,Tx模式下会消耗14.7mA,Rx模式下会消耗15.7mA。  相似文献   

17.
This paper proposes a new automatic compensation network (ACN) for a system‐on‐chip (SoC) transceiver. We built a 5 GHz low noise amplifier (LNA) with an on‐chip ACN using 0.18 µm SiGe technology. This network is extremely useful for today's radio frequency (RF) integrated circuit devices in a complete RF transceiver environment. The network comprises an RF design‐for‐testability (DFT) circuit, capacitor mirror banks, and a digital signal processor. The RF DFT circuit consists of a test amplifier and RF peak detectors. The RF DFT circuit helps the network to provide DC output voltages, which makes the compensation network automatic. The proposed technique utilizes output DC voltage measurements and these measured values are translated into the LNA specifications such as input impedance, gain, and noise figure using the developed mathematical equations. The ACN automatically adjusts the performance of the 5 GHz LNA with the processor in the SoC transceiver when the LNA goes out of the normal range of operation. The ACN compensates abnormal operation due to unusual thermal variation or unusual process variation. The ACN is simple, inexpensive and suitable for a complete RF transceiver environment.  相似文献   

18.
基于0.18μm RF CMOS工艺,采用双端调谐结构实现了一种可应用于WLAN的二次变频收发机的压控振荡器.其输出频率范围可以覆盖收发机所需4.1~4.3GHz的频段,其最大调谐范围为500MHz.在距中心频率4.189GHz为4MHz处的相位噪声为-117dBc/Hz,500kHz处为-107dBc/Hz.输出信号抖动的均方根值为4.423ps,输出功率为-8.68dBm.  相似文献   

19.
A low voltage,highly linear transconductance-C(Gm-C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed.This transmitter(Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency.By utilizing pseudo-differential linear-region MOS transconductors,the filter IIP3 is measured to be as high as 9.5 dBm.Fabricated in a 0.35μm standard CMOS technology,the proposed filter chip occupies a 0.41×0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.  相似文献   

20.
?Cognitive radio? has emerged as a new design paradigm for next-generation wireless networks that aims to increase utilization of the scarce radio spectrum (both licensed and unlicensed). Learning and adaptation are two significant features of a cognitive radio transceiver. Intelligent algorithms are used to learn the surrounding environment, and the knowledge thus obtained is utilized by the transceiver to choose the frequency band (i.e., channel) of transmission as well as transmission parameters to achieve the best performance. In this article we first provide an overview of the different components to achieve adaptability in a cognitive radio transceiver and discuss the related approaches. A survey of the cognitive radio techniques used in the different wireless systems is then presented. To this end, a dynamic opportunistic channel selection scheme based on the cognitive radio concept is presented for an IEEE 802.11-based wireless mesh network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号