首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蜂窝车用无线通信(cellular vehicle-to-everything,C-V2X)系统中,基于V2V(vehicle-to-vehicle)车载通信采用复用蜂窝用户(cellular user,CUE)的频谱资源减轻基站负载实现部分近场V2V通信,在提高系统传输速率的同时也产生了同频干扰的问题。针对该问题,提出基于信道反转的动态功率控制方案,在非截断区内对V2V用户(V2V user,VUE)进行信道反转功率控制,补偿因发射功率有限造成的截断中断,通过动态功率控制解决蜂窝用户和V2V用户间的同频干扰。在此基础上,通过拉格朗日乘子法得到目标函数的最优对偶解,利用二分法确定CUE和VUE的最优功率,满足蜂窝用户传输速率要求的同时最大化V2V用户的总传输速率。数值仿真结果表明,当VUE总中断概率为0.866时,该方案使系统性能提升了48%。  相似文献   

2.
Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.  相似文献   

3.
Multimedia data often have different levels of importance such that more important bits are less error-tolerant. A new rate control method for transporting such multimedia data over parallel wireless links with heterogeneous reliability is proposed. Rate-controlled parallel transmissions (RCPT) of different layers of a multimedia stream with different levels of importance over a wireless channel that support multiple links with heterogeneous reliability can improve the efficiency in resource allocation while satisfying the quality of service requirement of the multimedia connection. To exploit RCPT, we present and evaluate a novel dynamic resource allocation method that decomposes the available radio resources into multiple sets of links with different levels of reliability. We mathematically formulate a rate control problem for the flexible RCPT scheme and develop an efficient real-time resource allocation algorithm with a remarkably fast rate of convergence. Simulation results show that the proposed method improves the utility and reduces the power consumed for delivery of a multimedia stream at the required quality of service, in comparison with a previous scheme, where different layers of each multimedia class are scheduled with dependency, and two schemes that provide homogeneous high or low reliability over all parallel links.  相似文献   

4.
Cognitive radio makes it possible for an unlicensed user to access a spectrum unoccupied by licensed users. In cognitive radio networks, extra constraints on interference temperature need to be introduced into radio resource allocation. In this paper, the uplink radio resource allocation is investigated for OFDMA‐based cognitive radio networks. In consideration of the characteristics of cognitive radio and OFDMA, an improved water‐filling power allocation scheme is proposed under the interference temperature constraints for optimal performance. Based on the improved water‐filling power allocation, a simple subcarrier allocation algorithm for uplink is proposed. The subcarrier allocation rules are obtained by theoretical deduction. In the uplink subcarrier allocation algorithm, the subcarriers are allocated to the users with the best channel quality initially and then adjusted to improve the system performance. A cursory water‐filling level estimation method is used to decrease the complexity of the algorithm. Asymptotic performance analysis gives a lower bound of the stability of the water‐filling level estimation. The complexity and performance of the proposed radio resource allocation scheme are investigated by theoretical analysis and numerical results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Device‐to‐device (D2D) communication in the fifth‐generation (5G) wireless communication networks (WCNs) reuses the cellular spectrum to communicate over the direct links and offers significant performance benefits. Since the scarce radio spectrum is the most precious resource for the mobile‐network operators (MNOs), optimizing the resource allocation in WCNs is a major challenge. This paper proposes an adaptive resource‐block (RB) allocation scheme for adequate RB availability to every D2D pair in a trisectored cell of the 5G WCN. The hidden Markov model (HMM) is used to allocate RBs adaptively, promoting high resource efficiency. The stringent quality‐of‐service (QoS) and quality‐of‐experience (QoE) requirements of the evolutionary 5G WCNs must not surpass the transmission power levels. This is also addressed while using HMM for RB allocation. Thus, an energy‐efficient RB allocation is performed, with higher access rate and mean opinion score (MOS). Cell sectoring effectively manages the interference in the 5G networks amid ultrauser density. The potency of the proposed adaptive scheme has been verified through simulations. The proposed scheme is an essential approach to green communication in 5G WCNs.  相似文献   

6.
Routing protocols for vehicular ad hoc networks (VANETs) have attracted a lot of attention recently. Most of the researches emphasize on minimizing the end‐to‐end delay without paying attention to reducing the usage of radio. This paper focuses on delay‐bounded routing, whose goal is to deliver messages to the destination within user‐defined delay and to minimize the usage of radio because radio spectrum is a limited resource. The messages can be delivered to the destination by the hybrid of data muling (carried by the vehicle) and forwarding (transmitted through radio). In the existing protocol, a vehicle may only switch the delivery strategy (muling or forwarding) at an intersection according to the available time of the next road segment, which is between the current intersection and the next intersection. To improve previous works, our protocol uses linear regression to predict the available time and the traveling distance, and thus, the vehicle can switch to a proper delivery strategy at a proper moment and can reduce the number of relays by radio. Our protocol contains two schemes: the greedy and centralized schemes. The greedy scheme uses only the current sampling data to predict the available time and decide when to switch the delivery strategy, whereas the centralized scheme uses the global statistical information to choose a minimum‐cost path. Simulation results justify the efficiency of the proposed protocol. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
在支持车与车直接通信(V2V)的非正交多址接入(NOMA)蜂窝网络场景下,针对V2V用户与蜂窝用户的干扰以及NOMA准则下的功率分配问题,该文提出一种基于能效的动态资源分配算法。该算法首先为了保证V2V用户的时延及可靠性同时满足蜂窝用户的速率需求,联合考虑子信道调度、功率分配和拥塞控制,建立了最大化系统能效的随机优化模型。其次,利用李雅普诺夫随机优化方法,通过控制可接入数据量保证队列稳定性以避免网络拥塞,并根据实时网络负载状态动态地进行资源调度,设计一种次优化子信道匹配算法获得用户调度方案,进一步,利用凸优化理论和拉格朗日对偶分解方法得到功率分配策略。最后,仿真结果表明,该文算法可以满足不同用户的服务质量(QoS)需求,并在保证网络稳定性前提下提高系统能效。  相似文献   

8.
In this paper, a novel distributed power control (DPC) scheme for cellular network in the presence of radio channel uncertainties such as path loss, shadowing, and Rayleigh fading is presented. Since these uncertainties can attenuate the received signal strength and can cause variations in the received signal-to-interference ratio (SIR), a new DPC scheme, which can estimate the slowly varying channel uncertainty, is proposed so that a target SIR at the receiver can be maintained. Further, the standard assumption of a constant interference during a link's power update used in other works in the literature is relaxed. A CDMA-based cellular network environment has been developed to compare the proposed scheme with earlier approaches. The results show that our DPC scheme can converge faster than others by adapting to the channel variations. In the presence of channel uncertainties, our DPC scheme renders lower outage probability while consuming significantly low power per active mobile user compared with other schemes that are available in the literature.  相似文献   

9.
An integrated multi‐beam satellite and multi‐cell terrestrial system is an attractive means for highly efficient communication due to the fact that the two components (satellite and terrestrial) make the most of each other's resources. In this paper, a terrestrial component reuses a satellite's resources under the control of the satellite's network management system. This allows the resource allocation for the satellite and terrestrial components to be coordinated to optimize spectral efficiency and increase overall system capacity. In such a system, the satellite resources reused in the terrestrial component may bring about severe interference, which is one of the main factors affecting system capacity. Under this consideration, the objective of this paper is to achieve an optimized resource allocation in both components in such a way as to minimize any resulting inter‐component interference. The objective of the proposed scheme is to mitigate this inter‐component interference by optimizing the total transmission power — the result of which can lead to an increase in capacity. The simulation results in this paper illustrate that the proposed scheme affords a more energy‐efficient system to be implemented, compared to a conventional power management scheme, by allocating the bandwidth uniformly regardless of the amount of interference or traffic demand.  相似文献   

10.
For us to meet the green and reliable communication requirement by the forthcoming fifth generation mobile networks, this paper focuses on a secrecy constrained device‐to‐device (D2D) underlay massive multiple‐input multiple‐output hybrid network, where the D2D user (DU) and cellular user (CU) links are exposed to passive malicious eavesdroppers. The D2D transmitters harvest the power from the signals of dedicated power beacons (PBs), but also the ambient radio frequency (RF) interference of CUs. The signals of PBs are known previously at the receivers of both the D2D and cellular users but are not known at eavesdroppers so that it can be regarded as an artificial noise. For the interested hybrid networks, we first present an energy‐harvesting scheme based on the inversion power control where the power received at the corresponding receiver is higher than the receiver's sensitivity. Then, by modeling the locations of network elements as Poisson point process and applying stochastic geometry, we derive the sufficient probability that a typical D2D transmitter harvests sufficient energy to establish communication links. Finally, with the derived sufficient probability, we evaluate the performance of the CUs and DUs in the achievable ergodic rate and the secrecy outage probability. Both the analytical and simulated results show that precious power of network is saved because of the ambient RF interference exploited, and the secrecy of both D2D and cellular links is improved simultaneously because of the signal of PBs modeled as artificial noises at CUs and DUs.  相似文献   

11.
Device‐to‐device (D2D) communication is a viable solution proposed by the Third Generation Partnership Project (3GPP) to handle the enormous number of devices and expected data explosion in 5G. It is competent in enhancing the system performances such as increased data rate, reduced delay, and less power consumption while maintaining a low load on the base station (BS). In this paper, channel assignment and power control scheme is proposed for underlay D2D system where one cellular channel is allowed to be shared among multiple D2D pairs. This will lead to enhanced spectral efficiency on the cost of additional interferences introduced among the D2D and cellular users (CUs). Our aim is to maximize the D2D throughput without degrading the performance of existing CU that is sharing the channel with D2D. This is achieved by maintaining a threshold signal‐to‐interference‐plus‐noise ratio (SINR) for each CU. A centralized channel assignment algorithm based on the well‐known two‐sided preference Gale‐Shapley algorithm is proposed, named as RAbaGS‐HR. Further, suboptimal distributed power control (DPC) algorithms are proposed for both uplink and downlink D2D. The novelty of the work lies in the facts that a channel is shared among multiple D2D users and the optimal power is calculated for all the users sharing the same channel under the full consideration of all kinds of interferences unlike most of the existing work that either assumed the fixed CU power or ignored the interferences among the D2D users. Numerical results show the efficacy of the proposed algorithms in terms of significant gain in throughput with a very low computational cost. In addition to this, the energy efficiency (EE) is also analyzed for different D2D user density, with respect to average circuit power consumption and D2D maximum transmit power.  相似文献   

12.
Cognitive femtocell has been considered as a promising technique that can improve the capacity and the utilization of spectrum efficiency in wireless networks because of the short transmission distance and low transmit power. In this paper, we study the win–win solution of energy‐efficient radio resource management in cognitive femtocell networks, where the macrocell tries to maximize its revenue by adjusting spectrum utilization price while the femtocells try to maximize their revenues by dynamically adjusting the transmit power. When the spectrum utilization price is given by macrocell, we formulate the power control problem of standalone femtocells as an optimization problem and introduce a low‐complexity iteration algorithm based on gradient‐assisted binary search algorithm to solve it. Besides, non‐cooperative game is used to formulate the power control problem between collocated femtocells in a collocated femtocell set, and then low complexity and widely used gradient‐based iteration algorithm is applied to obtain the Nash‐equilibrium solution. Specially, asymptotic analysis is applied to find the approximate spectrum utilization price in macrocell, which can greatly reduce the computational complexity of the proposed energy‐efficient radio resource management scheme. Finally, extensive simulation results are presented to verify our theoretical analysis and demonstrate the performance of the proposed scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
赵昆  邱玲  朱近康 《电子与信息学报》2005,27(11):1681-1685
在蜂窝无线通信系统设计中,基于信号干扰比(SIR)测量的功率控制方法得到广泛的应用。该文提出多输入多输出(MIMO)天线蜂窝系统中的基于SIR测量的分布式功率控制(DPC)方法。该方法通过控制移动台或者基站的发射功率可以达到以下两个目标的其中之一:(1)最小化所有基站或者移动台的平均接收SIR中断概率;(2)在满足目标SIR要求的前提下最小化平均发射功率。数值仿真结果显示,该文提出的DPC方法在低的计算复杂度下,可以达到降低SIR中断概率和减小发射功率的目的。  相似文献   

14.
叶佩文  贾向东  杨小蓉  万妮妮 《信号处理》2020,36(11):1906-1913
针对车联网V2I/V2V用户异构性需求以及V2V用户复用V2I链路引起的复杂干扰,本文基于超图划分的思想,提出了预先V2V用户分簇、允许接入多V2I链路的资源共享机制。首先,在被动簇集模型基础上依赖车辆节点干扰强度将车辆划分为不同的簇,从而减少了同簇车辆节点的相互干扰;然后,通过最大化V2I总吞吐量来设计车辆节点的最佳功率;最后,利用3维匹配算法完成基站、资源块和车辆节点三者之间的匹配。仿真结果表明,所提机制满足V2V链路可靠性,同时使得V2I链路总吞吐量最大,分析结论为智能交通中车联网通信应用提供了理论参考。   相似文献   

15.
Resource allocation for cellular radio systems   总被引:1,自引:0,他引:1  
High terminal traffic densities are expected in urban multiuser radio systems. An efficient allocation of resources is the key to high system capacity. In this paper, a distributed dynamic resource allocation (DDRA) scheme based on local signal and interference measurements is proposed for multiuser radio networks. It offers “soft capacity” for time division multiple access (TDMA) and frequency division multiple access (FDMA) systems, bounded above by N per base station, where N is the total number of channels in the system. The decisions are made local to a terminal and its base and are essentially independent of the rest of the system. A distributed dynamic channel assignment scheme is used to assign channels to new calls. This scheme assigns a channel that offers the maximum carrier to interference ratio (CIR) to a new call. A distributed constrained power control (DCPC) scheme based on CIR measurements is used for power control. The channel assignment scheme and the power control scheme are coupled to obtain an interactive resource allocation scheme. We compare the capacity of a system which uses the distributed dynamic resource allocation scheme described above with the capacity of a system which uses the channel assignment scheme alone. The system capacity is measured by simulation as the number of terminals that can be served by the system with a CIR above an acceptable minimum. In a 1D cellular system, coupling the channel assignment scheme with power control is discussed. Simulations were also used to show the effect of varying the maximum transmitter power on system capacity  相似文献   

16.
何小祥  王碧钗 《电讯技术》2024,64(2):281-287
第五代(5th Generation, 5G)无线通信系统除了支持蜂窝通信,还支持侧行链路(Sidelink, SL)通信,即两个用户设备(User Equipment, UE)之间可以直接通信,而不需要经过基站中转,有利于降低传输时延、提升资源利用率。在现有的SL分布式系统中,主要通过简单的能量测量进行干扰规避,资源复用准则欠佳,导致中高用户密度场景下吞吐受限。为此,提出了一种基于分布式功率控制的SL高谱效传输机制。各发送UE基于目标链路的信道状态信息(Channel State Information, CSI)和其他干扰链路的CSI进行功率优化,以实现局部范围内多个通信链路的和吞吐最大化;进一步,设计了广播式的CSI测量上报机制能实现多链路的分布式功率控制和资源选择。仿真结果表明,所提方案相比于现有的SL分布式资源分配机制,在中高用户密度下可获得30%~100%的吞吐增益;此外,所提方案相比于现有WiFi的载波侦听多址(Carrier Sense Multiple Access, CSMA)分布式信道接入机制,在中高用户密度下可获得50%~200%的吞吐增益。  相似文献   

17.
曹型兵  王伟超 《电讯技术》2017,57(12):1433-1439
为优化蜂窝用户通信与设备直传(D2D)中继通信共存下的同频干扰问题,满足蜂窝用户容量要求,提出了一种基于能效的联合资源分配和功率控制的D2 D中继选择算法.该算法首先对等效D2 D中继链路进行资源分配,减小算法复杂度的同时使得D2 D链路对蜂窝链路产生的干扰最小;然后以资源分配结果和功率控制算法为依据进行中继选择.该方案不仅考虑了D2 D中继链路的能效问题,而且还同时考虑到了对蜂窝链路的干扰问题.通过仿真验证,所提算法不仅能有效提升D2 D中继链路的能效值,同时降低了对蜂窝用户的干扰.  相似文献   

18.
We present a traffic-scheduling framework that can dynamically allocate radio resources to a general packet radio service (GPRS) mobile station (MS) based on the interference levels of the radio links and the quality of service (QoS) specification of the MS. The underlying idea of this scheduling scheme is to preserve more bandwidth for use by those MSs that are within a low interference region so that the limited radio resources can be used more effectively. In this scheme, an MS uses a low transmission rate for data transfer when the MS is within a high interference region to avoid wasting bandwidth by transmitting data in a condition with high interference. In order to compensate for the service loss of the MS, we allocate more bandwidth to the MS when it is within a low interference region. In addition, we also propose an analytical model that can be used to derive the transmission rate for an MS in a low interference region based on the delay-bound requirement of the MS. The performance results show that our dynamic scheme can utilize the bandwidth more effectively to satisfy various QoS requirements of the MSs in the GPRS system without changing the convolution-coding rate.  相似文献   

19.
This paper investigates the radio resource management (RRM) issues in a heterogeneous macro‐femto network. The objective of femto deployment is to improve coverage, capacity, and experienced quality of service of indoor users. The location and density of user‐deployed femtos is not known a‐priori. This makes interference management crucial. In particular, with co‐channel allocation (to improve resource utilization efficiency), RRM becomes involved because of both cross‐layer and co‐layer interference. In this paper, we review the resource allocation strategies available in the literature for heterogeneous macro‐femto network. Then, we propose a self‐organized resource allocation (SO‐RA) scheme for an orthogonal frequency division multiple access based macro‐femto network to mitigate co‐layer interference in the downlink transmission. We compare its performance with the existing schemes like Reuse‐1, adaptive frequency reuse (AFR), and AFR with power control (one of our proposed modification to AFR approach) in terms of 10 percentile user throughput and fairness to femto users. The performance of AFR with power control scheme matches closely with Reuse‐1, while the SO‐RA scheme achieves improved throughput and fairness performance. SO‐RA scheme ensures minimum throughput guarantee to all femto users and exhibits better performance than the existing state‐of‐the‐art resource allocation schemes.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Modern wireless communication networks frequently have lower application throughput due to higher number of collisions and subsequent retransmission of data packets. Moreover, these networks are characterized by restricted computational capacity due to limited node‐battery power. These challenges can be assessed for deploying fast, reliable network design with resource‐restrained operation by means of concurrent optimization of multiple performance parameters across different layers of the conventional protocol stack. This optimization can be efficiently accomplished via cross‐layer design with the aid of network coding technique and optimal allocation of limited resources to wireless links. In this paper, we evaluate and analyze intersession coding across several source–destination pairs in random access ad hoc networks with inherent power scarcity and variable capacity links. The proposed work addresses the problem of joint optimal coding, rate control, power control, contention, and flow control schemes for multi‐hop heterogeneous networks with correlated sources. For this, we employ cross‐layer design for multiple unicast sessions in the system with network coding and bandwidth constraints. This model is elucidated for global optimal solution using CVX software through disciplined convex programming technique to find the improved throughput and power allocation. Simulation results show that the proposed model effectively incorporates throughput and link power management while satisfying flow conservation, bit error rate, data compression, power outage, and capacity constraints of the challenged wireless networks. Finally, we compare our model with three previous algorithms to demonstrate its efficacy and superiority in terms of various performance metrics such as transmission success probability, throughput, power efficiency, and delay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号