首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objectives of the present study were to determine the effects of rumen undegradable protein (RUP) level of prepartum diets, the supplementation of a rumen-protected choline product, and their interactions on milk production, feed intake, body weight and condition, blood metabolites, and liver triacylglycerides in dairy cows. Rumen-protected choline (RPC) was fed with two levels of RUP to 48 multiparous Holstein cows in a 3 x 2 factorial arrangement of treatments. Beginning 28 d before expected calving, cows were fed 10% rumen degradable protein, either 0, 6, or 12 g/d of RPC as CapShure (Balchem Corp., Slate Hill, NY) and either 4.0 or 6.2% RUP. After calving and through 120 d of lactation, cows received a common diet and continued RPC as per their prepartum assignment. Prepartum dry matter intake (kg/d) was not affected by RPC or RUP. Postpartum intake decreased when 6.2% RUP was fed prepartum. Milk production to 56 d in milk was decreased when cows were fed 6.2% RUP prepartum. Milk protein (kg/d) decreased when additional RUP was fed prepartum. Cows fed RPC lost more weight during the study period and tended to lose more body condition. Plasma urea nitrogen levels in the prepartum period were reduced for cows fed 4.0% RUP prepartum. Mean liver triacylglyceride determined from samples obtained at -28, -14, +1, +28, and +56 d in milk was not affected by RPC, prepartum RUP, or their combinations. Feeding 12 g of RPC/d in conjunction with 4.0% RUP increased milk production, but feeding RPC with 6.2% RUP prepartum and through 56 d in milk decreased production. The data indicate that 6.2% RUP does not benefit close-up dry cows, and the response to RPC depends the RUP content of the prepartum diet.  相似文献   

2.
The effect of induced parturition and estradiol on feed intake, liver triglyceride, plasma metabolites, and milk yield was evaluated in fifty-six Holstein cows and heifers. Cows were assigned to treatments on d 260 of gestation and were on trial until d 10 postpartum for measurement of dry matter intake (DMI), plasma metabolites, and liver triglyceride and until d 31 postpartum to measure milk yield. Fourteen animals per group (9 cows and 5 heifers) received either a placebo, 1 mg of fenprostalene, 50 mg of estradiol-17 beta benzoate, or both on d 276 of gestation. Cows that received fenprostalene consumed more dry matter (DM) for the last 8 d prepartum than did cows that did not receive fenprostalene (9.6 kg/d vs. 8.5 kg/d, respectively) but consumed less DM for the first 10 d postpartum (10.9 kg/d vs. 13.1 kg/d, respectively). Cows injected with estradiol-17 beta benzoate tended to consume less DM postpartum than did cows not injected with estradiol-17 beta benzoate (11.3 kg/d vs. 12.7 kg/d, respectively). There was no effect of treatment on milk yield; however, a fenprostalene by day interaction resulted from lower milk yield on d 3, 4, 5, 7, and 10 relative to calving in cows that received fenprostalene. Administration of fenprostalene resulted in a delay in the peak plasma nonesterified fatty acid (NEFA) concentration until 2 d after calving. Plasma glucose concentrations were greatest 1 d prior to calving for cows that received fenprostalene, whereas plasma glucose concentrations peaked on the day of calving for cows that did not receive fenprostalene. Liver triglyceride increased over time; however, there was no effect of treatment on liver triglyceride. Calving induction improved DMI for the last 8 d prepartum, but a concomitant decrease in liver triglyceride after calving did not result. Estradiol-17 beta benzoate had no effect on plasma metabolites or liver triglyceride, indicating that the physiological rise in estradiol prior to calving does not have a primary role in lipolysis or hepatic fatty acid metabolism in the dairy cow.  相似文献   

3.
Eighteen multiparous and 9 primiparous Holstein cows were used to determine the effects of a 13 and 23% crude protein concentrate on milk fat depression during early lactation. Beginning on d 22 postpartum, cows were fed a high fiber diet (27% acid detergent fiber) for 3 wk and then switched to a low fiber diet (9 to 10% acid detergent fiber) for 6 wk. Crude protein percentages calculated from dry matter consumption were 13.5 and 17.9% during the high fiber period and 12.7 and 22.3% during the low fiber period. Daily milk and fat yields for both primiparous and multiparous cows were greater for the high protein treatment. The magnitude of decline in milk fat percentage (from high to low fiber) was greater for the low protein treatment, as determined by nonlinear regression. The high protein treatment was more effective in reducing the severity of milk fat depression in primiparous cows than in multiparous cows. Dietary crude protein had no effect on milk protein or solids-not-fat percentages, rumen volatile fatty acid molar proportions, or serum acetate concentration. The mechanism by which the high protein ration minimized the fat depression response to low fiber rations by primiparous cows is unknown.  相似文献   

4.
Twenty-seven dairy cows in midlactation were utilized in two experiments using 15 and 12 cows to determine effects of varying the delivery of ruminally undegraded protein on feed intake, milk production, and some rumen and plasma characteristics. In Experiment 1, cows consumed alfalfa silage ad libitum and one of three barley-based concentrates with either soybean meal (a rapidly rumen degraded protein source), corn gluten meal (a slowly degraded protein source), or an equal mixture of the two, fed at the rate of .36 kg/kg of milk produced. In Experiment 2, cows were fed total mixed diets based upon alfalfa silage, barley, and either soybean meal, corn gluten meal, or a mixture of soybean meal and whey powder (a protein source very rapidly degraded in the rumen). In sacco incubation procedures were used to estimate degradability of protein in all diets. All diets exceeded Agricultural Research Council recommendations for rumen degraded and undegraded protein as well as NRC recommendations for degraded protein. However, one to three of the six total diets, depending upon assumed ruminal turnover rates, did not meet NRC recommendations for undegraded protein. Production parameters, include DMI as well as milk yield and composition, were not influenced by diet in either experiment. Results do not support NRC recommendations for ruminally undegraded protein for midlactation dairy cows producing about 30 kg/d of milk and broadly support the lower recommendations of the Agricultural Research Council. Results also appear to question use of dietary energy intake to predict net rumen microbial protein yield.  相似文献   

5.
《Journal of dairy science》2021,104(11):11646-11659
Our aim was to evaluate the effects of a low or high dietary phosphorus (P) concentration during the dry period, followed by either a high or low dietary P concentration during the first 8 wk of lactation, on plasma Ca concentrations, feed intake, and lactational performance of dairy cattle. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged in a 2 × 2 factorial fashion. The experimental diets contained 3.6 (Dry-HP) or 2.2 (Dry-LP) g of P/kg of dry matter (DM) during the dry period, and 3.8 (Lac-HP) or 2.9 (Lac-LP) g of P/kg of DM during 56 d after calving period. In dry cows, plasma Ca concentrations were 3.3% greater when cows were fed 2.2 instead of 3.6 g of P/kg of DM. The proportion of cows being hypocalcemic (plasma Ca concentrations <2 mM) in the first week after calving was lowest with the low-P diets both during the dry period and lactation. Plasma Ca concentrations in wk 1 to 8 after calving were affected by dietary P level in the dry period and in the lactation period, but no interaction between both was present. Feeding Dry-LP instead of Dry-HP diets resulted in 4.1% greater plasma Ca values, and feeding Lac-LP instead of Lac-HP diets resulted in 4.0% greater plasma Ca values. After calving, plasma inorganic phosphate (Pi) concentrations were affected by a 3-way interaction between sampling day after calving, and dietary P levels during the dry period and lactation. From d 1 to d 7 postpartum, cows fed Lac-HP had increased plasma Pi concentrations, and the rate appeared to be greater in cows fed Dry-LP versus Dry-HP. In contrast, plasma Pi concentrations decreased from d 1 to d 7 postpartum in cows fed Lac-LP, and this decrease was at a higher rate for cows fed Dry-HP versus Dry-LP. After d 7, plasma Pi concentrations remained rather constant at 1.5 to 1.6 mM when cows received Lac-HP, whereas with Lac-LP plasma Pi concentrations reached stable levels (i.e., 1.3–1.4 mM) at d 28 after calving. Milk production, DM intake, and milk concentrations of P, Ca, fat, protein, and lactose were not affected by any interaction nor the levels of dietary P. It is concluded that the feeding of diets containing 2.2 g of P/kg of DM during the last 6 wk of the dry period and 2.9 g of P/kg of DM during early lactation increased plasma Ca levels when compared with greater dietary P levels. These low-P diets may be instrumental in preventing hypocalcemia in periparturient cows and do not compromise DM intake and milk production. Current results suggest that P requirements in dairy cows during dry period and early lactation can be fine-tuned toward lower values than recommended by both the National Research Council and the Dutch Central Bureau for Livestock Feeding. Caution however is warranted to extrapolate current findings to entire lactations because long-term effects of feeding low-P diets containing 2.9 of g/kg of DM on production and health needs further investigation.  相似文献   

6.
In a 3 X 2 factorial experiment 75 Holstein cows in first, second, or third lactation were fed rations containing either 12.2% or 16.2% crude protein in total ration dry matter. On the average, 26% of dry matter intake was from corn silage, 22% from alfalfa-grass hay, and 52% from a grain mix. Protein was controlled by feeding a 13.7% crude protein grain mix with 1.4% urea for the 12% ration and a 19.8% crude protein grain mix with natural protein for the 16% ration. Average daily milk production (kg/day) for wk 2 through 12 of lactation for 12% and 16% rations by lactations were: first, 21.6 and 21.9; second, 25.7 and 31.5; and third, 27.5 and 34.0. Dry matter intakes by lactations were .42, 1.18, and 2.05 kg/day higher for cows fed the high protein compared to low protein rations. Milk composition was not influenced by protein treatment. The markedly different response to protein supplementation in milk production between heifers in first lactation and more mature cows is unexplained.  相似文献   

7.
Dry multiparous cows were used to investigate the effects on intake, production, and metabolism of either a supplement containing 55% dry propylene glycol (PGLY), a prilled fat supplement (PrFA) containing a low proportion of unsaturated fatty acids (FA), or calcium soaps of FA supplement (CaLFA) containing a high proportion of unsaturated FA. Fifty-three dry cows (256 d pregnant) were stratified into 4 groups and began one of the following dietary treatments: 1) control cows were fed a dry cow diet and at postpartum were fed a lactating cow diet; 2) diets of cows in the PGLY group were supplemented with 500 g/d per cow of dry PGLY until 21 d in milk (DIM); 3) diets of cows in the PrFA group were supplemented with 230 g/d per cow of PrFA until 100 DIM; 4) diets of cows in the CaLFA group were supplemented with 215 g/d per cow of CaLFA until 100 DIM. Prepartum DMI was lower in the PrFA and CaLFA groups than in the control and PGLY groups, whereas postpartum DMI in the PrFA group was higher than that in the control group. Milk production until 100 DIM in both fat-supplemented groups was 4.5% higher than that in the control group. Plasma glucose concentrations pre- and postpartum were higher in the PGLY group than in the PrFA and CaLFA groups, but were similar to those in the control group. Prepartum nonesterified FA (NEFA) concentrations in plasma were increased by 43 and 70% in the PrFA and CaLFA groups, respectively, as compared with the control and PGLY groups. Both fat supplements increased plasma β-hydroxybutyrate concentrations over those of the PGLY and control groups pre- and postpartum. Peripartum plasma insulin concentrations in the control group were 1.7-fold higher than in the PrFA group and 2.1-fold higher than in the CaFA group. Differences between the PrFA and CaLFA groups were observed: DMI was higher pre- and postpartum in the PrFA group than in the CaLFA group, and prepartum plasma NEFA concentrations were 19% higher and insulin concentrations were 21% lower in the CaLFA group than in the PrFA group. No significant differences were observed in DMI, plasma glucose, NEFA, and β-hydroxybutyrate concentrations between the control and PGLY groups. Feeding fat to cows during late pregnancy decreased the DMI and negatively affected the metabolic status of the cows, as reflected by plasma metabolites. Furthermore, protected fat with a high proportion of unsaturated FA (CaLFA) was more pronounced in increasing plasma NEFA concentrations and depressing plasma insulin concentrations than fat with a low proportion of unsaturated FA (PrFA).  相似文献   

8.
Twelve lactating Holstein cows were blocked according to age and milk production into groups of three cows and assigned to three 4 x 4 Latin squares in a split-plot design with subtreatments. Treatments on each square were four diets formulated to provide -10, 0, +10, or +20 meq/Na + K) -Cl/100 g diet DM. The four balances were achieved on squares 1, 2, and 3 by manipulating Na, K, and Cl, respectively. Actual milk yield was 8.6% higher on +20 than -10 averaged across the three squares. Blood pH and bicarbonate increased linearly with dietary cation-anion balance. Rumen pH increased linearly with dietary cation-anion balance, but fermentation patterns were largely unaffected. Urine pH increased linearly and quadratically with increasing dietary cation-anion balance. Square times balance response differences proved nonsignificant for all parameters except blood bicarbonate and rumen isovalerate, indicating responses could be attributed to the dietary cation-anion balance itself rather than to the effects of a single ion. Regulation of dietary cation-anion balance may become a useful tool for improving the performance of lactating dairy cattle.  相似文献   

9.
The primary objective of this study was to evaluate the effect on dry matter intake (DMI), milk yield, milk composition, body weight (BW), and body condition score (BCS) change of cows offered diets differing in energy density in the last 4 wk of gestation and in the first 8 wk of lactation. Three diets (grass silage:straw, 75:25 on a dry matter basis (SS), grass silage (S), and grass silage + 3 kg concentrate daily (C)) precalving, and two diets (4 kg [LC] or 8 kg [HC] concentrate daily + grass silage ad libitum) postcalving were combined in a 3 x 2 factorial design. Sixty Holstein-Friesian cows entering their second lactation were blocked according to expected calving date and BCS into groups of six and were then allocated at random to the treatments. Individual feeding started 4 wk prior to the expected calving date and measurements were made until the end of the 8th wk of lactation. Mean DMI differed between each of the precalving treatments (7.4, 8.1, and 9.9 kg/d for SS, S, and C, respectively) in the precalving period. The DMI also differed between SS and C for wk 1 to 8 (13.5 and 14.2 kg/d) postcalving. Postcalving, milk (24.2, 26.2, and 28.2 kg/d), fat (933, 1063, and 1171 g/d), and protein (736, 797, and 874 g/d) yields differed between SS, S, and C, respectively. The BCS changes differed between SS and C (-0.09 and 0.12 of a BCS) in the precalving period and between SS and S compared with C (0.02, 0.06, and -0.26 of a BCS) for wk 1 to 8 postcalving. The BW change differed between SS and S compared with C in both wk 1 to 4 (-0.23, -0.37, and -1.25 kg/d) and wk 1 to 8 (0.18, 0.10, and -0.58 kg/ d) postcalving. The BW and BCS were lower at calving for cows on SS compared with C. The greater amount of concentrate supplement postcalving increased DMI, yields of milk, fat, and protein and decreased BW loss in the first 8 wk of lactation. In conclusion, these results indicate that a greater energy density diet in the final 4 wk of the dry period improves cow production in early lactation.  相似文献   

10.
Feed intake, milk production, and milk fatty acid profiles of dairy cows fed corn silage-based diets with different protein and starch concentrations were measured in a 3-period experiment in a changeover design using 12 Holstein cows. Each experimental period lasted for 3 wk. The diet fed as a total mixed ration consisted of 45% corn silage, 5% coarsely chopped wheat straw, and 50% concentrate, on a dry matter (DM) basis. The 4 treatments, formulated to be isoenergetic and to differ in concentrations of dietary crude protein (CP) and starch (DM basis), were as follows: low CP and low starch (LPLS; 14% CP and 15% starch), low CP and high starch (LPHS; 14% CP and 25% starch), high CP and low starch (HPLS; 16% CP and 15% starch), and high CP and high starch (HPHS; 16% CP and 25% starch). The LPLS treatment led to lower DM intake, milk yield, milk protein concentration, and milk lactose yield, probably due to a shortage of both rumen-degradable protein supply to rumen microbes and glucogenic nutrients to the animal. There were no differences between protein-rich diets and LPHS, suggesting that this diet satisfied the rumen-degradable protein requirements of rumen microbes and did not limit feed intake, and the increased supply of glucogenic nutrients spared AA so that the nutrient requirements of mid lactation dairy cows were met. Further increases in CP concentration increased plasma urea concentration and resulted in decreased efficiency of conversion of dietary N into milk N. Milk fatty acid profiles were affected by starch and protein supply, with starch having the largest effect. Additionally, increasing dietary starch concentration decreased the apparent transfer of dietary polyunsaturated fatty acids to milk, suggesting an increased channeling of fatty acids to adipose tissue. The results further suggest that C15:0 and C17:0 are synthesized de novo in animal tissues.  相似文献   

11.
Effects of prepartum administration of a monensin controlled release capsule (CRC) on rumen pH, dry matter intake, and milk production during the transition period and early lactation were determined in 16 multiparous Holstein cows. Cows were divided into blocks of 2 depending on calving date. Cows were fed either a close-up dry cow or a lactating cow total mixed ration ad libitum. Rumen pH was monitored continuously using indwelling probes. Monensin did not affect average daily rumen pH, time below pH 6, time below pH 5.6, area below pH 6, and area below pH 5.6 throughout the experiment. Average daily pH, time below pH 6, and time below pH 5.6 before calving were 6.62, 65.6 min/d, and 17.6 min/d, respectively, and did not differ among the weeks before calving. Average daily pH, time below pH 6, and time below pH 5.6 were 6.19, 443.3 min/d, and 115.5 min/d, respectively, during the first week after calving, and were 6.36, 204.3 min/d, and 52.4 min/d, respectively, during the sixth week after calving. In the weeks after calving, average daily pH showed a quadratic increase, time below pH 6 showed a quadratic decrease, and time below pH 5.6 showed a linear decrease. Monensin did not affect dry matter intake and daily yields of milk, milk fat, and milk protein. Results suggest that prepartum administration of a monensin CRC did not increase rumen pH in multiparous cows fed the experimental diets during the transition period and early lactation.  相似文献   

12.
Effects of milk protein loci on first lactation production in dairy cattle   总被引:1,自引:0,他引:1  
A total of 920 cows of Holstein-based H line, Ayrshire-based A line, and cross-bred C line between H and A lines was used to determine the genotypic and gene frequencies of milk protein types and to study the relationships of milk protein loci to first lactation yields. Effects of milk protein loci on first lactation performance were examined using classification and gene substitution models. Gene frequencies at the five milk protein loci studied were similar to those reported in the literature. Gene substitution at alpha s1-casein locus showed the greatest effects on first lactation yields compared to those at other milk protein loci. Unfortunately, the favorable B allele at this locus is almost fixed (the frequency of the B allele = .955), a result of long-term selection for high milk production in dairy cattle. The extremely high frequency of a favorable allele at the alpha s1-casein locus imposes a limitation for further genetic improvement at this locus unless a more favorable mutation can be induced. Although favorable alleles at beta-casein, kappa-casein, and beta-lactoglobulin loci exerted smaller effects on first lactation performance than those at the alpha s1-casein locus, their moderate frequencies in the current population can be raised to improve lactation yields through milk protein typing. The combined contribution of the four milk protein loci accounted for 8.9% of phenotypic variance in milk yield, 8.6% in protein yield, ad 5.0% in fat yield.  相似文献   

13.
The main objective of this study was to assess associations between plasma insulin concentration around parturition and production in Holstein cows. Primiparous and multiparous cows (n = 267) were enrolled. Blood samples were collected within 12 h after parturition (d 0), and on d 3 and 10 after calving. In addition, blood samples were collected 7 d before (?7 d) the expected date of parturition and colostrum samples were collected within 8 h after parturition from a subset of cows to measure insulin concentration (n = 47). All samples were harvested from 0630 to 1100 h and were used to quantify insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate. The plasma concentrations of insulin on d ?7 and 0 were not correlated with insulin levels in colostrum. Cows were grouped according to plasma insulin concentration based on the median as low insulin (L-INS) or high insulin (H-INS) on d 0 (median = 0.35 ng/mL; range 0.2 to 1.2), 3 (median = 0.32 ng/mL; range 0.2 to 1.6), and 10 (median = 0.30 ng/mL; range 0.2 to 0.8). We detected that cows in the L-INS group on d 0 (L-INS = 0.57 ± 0.02; H-INS = 0.49 ± 0.02 mmol/L), d 3 (L-INS = 0.56 ± 0.02; H-INS = 0.49 ± 0.02 mmol/L), and d 10 (L-INS = 0.61 ± 0.03; H-INS = 0.55 ± 0.03 mmol/L) had higher NEFA concentrations compared with cows in the H-INS group. Compared with H-INS cows, milk yield was higher for cows classified as L-INS on d 0 (L-INS = 40.75 ± 0.69; H-INS = 38.41 ± 0.64 kg) and d 10 (L-INS = 40.95 ± 0.74; H-INS = 38.66 ± 0.64 kg). Moreover, fat-corrected milk was higher for cows classified as L-INS on d 0 (L-INS = 40.59 ± 2.36; H-INS = 37.73 ± 2.31 kg) and d 10 (L-INS = 41.00 ± 2.42; H-INS = 38.65 ± 2.28 kg) compared with H-INS cows, and energy-corrected milk was higher for L-INS cows compared with H-INS cows regardless of the day (d 0, L-INS = 44.50 ± 0.70 vs. H-INS = 41.67 ± 0.64 kg; d 3, L-INS = 43.65 ± 0.74 vs. H-INS = 40.88 ± 0.72 kg; d 10, L-INS = 44.09 ± 0.73 vs. H-INS = 40.55 ± 0.68 kg). We conclude that low plasma insulin concentration during early lactation is associated with higher milk yield in the long term.  相似文献   

14.
The objective of the study was to determine the effects of feed delivery time and its interactions with dietary concentrate inclusion and parity on milk production and on 24-h averages and patterns of feed intake and blood metabolites. Four multiparous and 4 primiparous lactating Holstein cows were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Experimental periods included 14 d of adaptation and 7 d of sampling. A higher concentrate diet with a forage:concentrate ratio (dry matter basis) of 38:62 or a lower-concentrate diet with a forage:concentrate ratio of 51:49 was delivered at either 0900 or 2100 h. During sampling periods, daily feed intakes, as well as feed intakes during 3-h intervals relative to feed delivery, were determined. During 2 nonconsecutive days of the sampling period, jugular blood was sampled every 2 h. Average temperature and relative humidity in the experimental facility were 20.4°C and 68.1%, and the maximum daily air temperature did not exceed 25°C. This data does not suggest that cows were heat-stressed. Changing feed delivery time from 0900 to 2100 h increased the amount of feed consumed within 3 h after feeding from 27 to 37% of total daily intake but did not affect daily dry matter intake. The cows fed at 2100 h had lower blood glucose at 2 h after feeding but greater blood lactate and β-hydroxybutyrate acid at 2 and 4 h after feeding than cows fed at 0900 h. These effects of feed delivery time on the 24-h patterns in blood metabolites may be caused by the greater feed intake during the 3 h after feed delivery of the cows fed at 2100 h. Daily averages of glucose, urea, lactate, and β-hydroxybutyrate acid and nonesterified fatty acids in peripheral blood were not affected by time of feeding. The change in feed delivery time did not affect milk yield and milk protein but increased milk fat percentage from 2.5 to 2.9% and milk fat yield from 0.98 to 1.20 kg/d in multiparous cows, without affecting milk fat in primiparous cows. The interactions between diet and time of feeding on daily feed intake, milk production, and blood metabolites were not significant. The effects of the time of feed delivery on the 24-h patterns in blood metabolites suggest that this time may affect peripheral nutrient availability. Results of this study suggest beneficial effects of feeding at 2100 h instead of at 0900 h on milk fat production of lactating cows, but parity appears to mediate this effect.  相似文献   

15.
《Journal of dairy science》2021,104(10):10699-10713
This study determined feeding behavior, dry matter (DM) intake (DMI), rumen fermentation, and milk production responses of lactating dairy cows fed with kale (Brassica oleracea) or swede (Brassica napus ssp. napobrassica). Twelve multiparous lactating dairy cows (560 ± 22 kg of body weight, 30 ± 4 kg of milk/d, and 60 ± 11 d in milk at the beginning of the experiment; mean ± standard deviation) were randomly allocated to 3 dietary treatments in a replicated 3 × 3 Latin square design. The control diet comprised 10 kg of grass silage DM/d, 4 kg of ryegrass herbage DM/d, and 8.8 kg of concentrate DM/d. Then, 25% of herbage, silage, and concentrate (DM basis) was replaced with either kale or swede. Cows offered kale had decreased total DMI compared with cows fed the control and swede diets, whereas inclusion of swede increased eating time. Milk production, composition, and energy-corrected milk:DMI ratio were not affected. Cows fed with kale had a greater rumen acetate:propionate ratio, whereas swede inclusion increased the relative percentage of butyrate. Estimated microbial N was not affected by dietary treatments, but N excretion was reduced with inclusion of kale, improving N utilization. Cows fed kale tended to have increased nonesterified fatty acids and showed presence of Heinz-Ehrlich bodies, whereas hepatic enzymes such as aspartate aminotransferase, γ-glutamyl transferase, and glutamate dehydrogenase were not affected by dietary treatments. In plasma, compared with the control, swede and kale reduced total saturated fatty acids and increased total polyunsaturated fatty acids and total n-3 fatty acids. Overall, feeding cows with winter brassicas had no negative effect on production responses. However, mechanisms to maintain milk production were different. Inclusion of swede increased the time spent eating and maintained DMI with a greater relative rumen percentage of butyrate and propionate, whereas kale reduced DMI but increased triacylglycerides mobilization, which can negatively affect reproductive performance. Thus, the inclusion of swede may be more suitable for feeding early-lactating dairy cows during winter.  相似文献   

16.
The objective was to study the interaction effects of rumen nitrogen balance (RNB) and dietary protein source on feed intake, apparent total-tract digestibility (ATTD), eating and ruminating activity, milk yield (MY), and milk composition in lactating dairy cows. Twenty-four lactating Holstein cows were divided in 4 groups, which were randomly assigned to the dietary treatments included in a replicated 4 × 4 Latin square experimental design that consisted of four 20-d periods, each with 12 d of adaptation to the experimental diets and 8 d of sampling. The dietary treatments followed a 2 × 2 factorial arrangement with 2 main protein sources, faba bean grain (FB) and SoyPass (SP; Beweka Kraftfutterwerk GmbH), offered at 2 dietary RNB levels: RNB0 (RNB of 0 g/kg of dry matter) and RNB? (RNB of –3.2 g/kg of dry matter; i.e., 4 treatments). The composition of concentrate mixtures was adjusted to create diets with the desired RNB levels. Each of the protein sources supplied ≥35% of the total dietary crude protein (CP). Both diets within a protein source had similar forage sources and forage to concentrate ratios and were iso-energetic, but differed in CP concentrations. The main effects of RNB, protein source, and their interactions were tested by PROC MIXED in SAS 9.4 (SAS Institute Inc.). Interaction effects were observed for daily dry matter intake and energy-corrected MY, which were lower for RNB? than RNB0 in diets containing FB (23.5 vs. 24.4 kg dry matter/d; 28.6 vs. 30.6 kg milk/d), but similar in diets containing SP (24.2 vs. 24.3 kg dry matter/d; 31.3 vs. 31.7 kg milk/d). The ATTD of NDF was lower for RNB? compared with RNB0 in the FB (44.9 vs. 49.1 g/100 g) and SP (48.5 vs. 51.9 g/100 g) diets, and greater for the SP than for FB diets. There were interaction effects for ATTD of CP and concentrations of milk urea nitrogen, which were lower for RNB? compared with RNB0 in both, FB (55 vs. 63.1 g/100 g of CP; 5.65 vs. 11.3 mg/dL milk) and SP diets (60 vs. 64.4 g/100 g of CP; 8.74 vs. 13.4 mg/dL milk). However, differences between RNB levels were greater for FB than for SP diets. Furthermore, proportions of milk fatty acids followed the same pattern as that of dietary fatty acids, but biohydrogenation appeared to be greater for RNB? than RNB0 for both protein sources and in FB than in SP diets for both RNB levels. There was an interaction effect on total number of chews per unit of NDF intake, which was greater for RNB? compared with RNB0 for both protein sources. However, the differences between RNB levels were greater in FB than in SP diets. Overall, differences in the animal responses to negative RNB between FB and SP diets suggest a need to better understand the effect of negative RNB levels with different dietary ingredients at similar utilizable CP supply.  相似文献   

17.
The objective of this experiment was to assess if feeding glyphosate-tolerant alfalfa affects feed intake, milk composition, or milk production of dairy cows. One alfalfa (Medicago sativa), variety expressing the CP4 EPSPS protein and grown in southeastern Washington State was harvested at the late vegetative stage as hay. Three commercial conventional varieties of alfalfa hay of similar nutrient composition and harvested in the same geographic region were fed to cows as controls. The commercial hays were selected to be similar in crude protein [18% of dry matter (DM)] and neutral detergent fiber (40% of DM) to the glyphosate-tolerant hay. Sixteen multiparous Holstein cows were fed diets containing alfalfa hay (39.7% of diet DM) from either the glyphosate-tolerant alfalfa, or 1 of the 3 conventional varieties. Diets contained at least 15.7% crude protein and 29% neutral detergent fiber. Experimental design was a replicated 4 × 4 Latin square. Periods were 28 d and feed intake, milk yield, and milk composition were summarized over the last 14 d of each period. Daily milk yield (38.0 kg) and 4% fat-corrected milk (34.7 kg) were not affected by treatment. Milk fat (3.44%) and milk true protein (2.98%) were also not affected by source of hay. Milk lactose (4.72%) and soldis-not-fat (8.5%) did not differ due to treatment. Dry matter intake was similar across treatments (24.4 kg/d). These results are consistent with data from feeding trials with other glyphosate-tolerant crops and previously reported compositional comparisons of glyphosate-tolerant alfalfa with controls. Milk production, milk composition, feed intake, and feed efficiency were not affected by feeding diets that contained nearly 40% glyphosate-tolerant alfalfa hay to lactating dairy cows.  相似文献   

18.
We determined the relationship between microsomal triglyceride transfer protein (MTP) (activity, mass, and mRNA) and liver triglyceride concentration in 16 dairy cows (13 multiparous and three primiparous) from 27 d before expected calving (d -27) to 35 d postpartum (d 35), the time period when fatty liver is most likely to develop. In addition, dry matter intake, plasma nonesterified fatty acids (NEFA), and plasma glucose were monitored. There were no significant parity x time interactions. Dry matter intake, plasma NEFA, plasma glucose, and liver triglyceride were significantly affected by day of sampling. Dry matter intake was 10.7, 8.0, and 19.5 kg/d on d -27, 2, and 35, respectively. Plasma NEFA concentration was higher on d 2 (1113 microEq/L) compared with d -27 (201 microEq/L) and 35 (358 microEq/L). Plasma glucose concentration was 63.3, 54.3, and 57.8 mg/dl on d -27, 2, and 35, respectively. Hepatic triglyceride (TG) concentration increased from 1.8 to 11.8% liver TG (DM basis) on d -27 and 2, respectively. There was no difference between hepatic triglyceride concentration on d 2 and 35. There was a significant effect of day of sampling on hepatic MTP activity and mRNA. Hepatic MTP activity decreased from 2.08 to 1.79 nmole triolein transferred/ h per mg of microsomal protein on d -27 and 2, respectively, and increased from 1.79 to 2.17 nmole triolein transferred/h per mg of microsomal protein on d 2 and 35, respectively. Hepatic MTP mRNA increased from d -27 to 2 and remained elevated from d 2 to 35. There was no effect of day of sampling on MTP mass. There were no significant correlations between hepatic MTP activity, mass, or mRNA with either liver TG or plasma NEFA on any of the sampling days. The cause of a decrease in hepatic MTP activity and increase in mRNA on d 2 is unknown. However, the lack of correlation between MTP activity, mass, or mRNA with either liver TG or plasma NEFA on d 2 postpartum suggests that MTP probably does not play a role in the etiology of fatty liver that occurs in dairy cows at calving.  相似文献   

19.
The effect of the addition of an essential oil (EO) preparation (containing a mixture of natural and nature-identical EO) on the performance of dairy ewes of the Chios breed was investigated. Eighty lactating ewes were allocated into 4 equal groups in a randomized block design, each with 4 replicates of 5 ewes housed in the same pen. The 4 groups were fed the same total mixed ration allowance, the roughage being a mixture of corn silage, lucerne hay, and wheat straw, and the concentrate based on cereals and oil cakes. Control ewes were fed their daily allowance of total mixed ration without any EO. The other 3 groups were supplemented with EO at levels of 50, 100, and 150 mg/kg of the concentrated feed, respectively. Individual milk yield was recorded daily and feed refusals were recorded on a pen basis weekly during the first 5 mo of lactation. Milk samples were analyzed for chemical composition, somatic cell count, and urea content. Rumen samples were analyzed for pH, NH3-N content, and protozoa, cellulolytic, hyper-ammonia-producing, and total viable bacteria counts. Results showed that inclusion of EO increased milk production per ewe, the effect being dose dependent [1.565, 1.681, 1.876, and 2.119 L/d (standard error of the difference ± 0.176) for the control, 50, 100, and 150 mg of EO/kg of concentrate diets, respectively], and thus improved feed utilization. Although the inclusion of EO did not affect milk composition, it lowered urea concentration and somatic cell count in milk samples at the highest supplementation level compared with the control. Total counts of viable and cellulolytic bacteria and protozoa were not influenced by EO supplementation; however, counts of hyper-ammonia-producing bacteria were decreased at the 2 highest supplementation levels compared with the control group. Rumen pH was not affected by EO supplementation, but rumen NH3-N was reduced at the highest EO supplementation level, and acetate rumen concentrations tended to decrease and propionate to increase in a dose-dependent manner. In conclusion, EO supplementation may improve feed utilization and performance of the high-yielding dairy Chios ewes; however, the underlying mechanisms leading to this improvement merit further investigation.  相似文献   

20.
Subacute ruminal acidosis (SARA) continues to be a common and costly metabolic disorder in high-producing dairy cows worldwide. The objective of this study was to evaluate if increasing the concentration of physically effective neutral detergent fiber (peNDF) in diets can reduce the risk of SARA in cows fed a high-concentrate diet. Thirty second-parity Holstein cows in mid lactation (131 ± 8.3 d in milk) were randomly allocated to 3 dietary treatments (10 dairy cows per group): high (11.3%, high peNDF8.0), medium (10.6%, medium peNDF8.0), or low (9.0%, low peNDF8.0) concentration of peNDF8.0. The diets were prepared by mixing the same total mixed ration (57% concentrate and 43% roughages) for 10, 18, or 60 min, respectively. The treatments were fed for 36 d with 21 d for adaptation and 15 d for sampling. The peNDF8.0 intake was positively correlated with the peNDF8.0 concentration. Chewing and ruminating times adjusted for dry matter intake and NDF intake were linearly increased with the increased dietary peNDF8.0 concentration. The high peNDF8.0 diet decreased the number of meals per day. The increased dietary peNDF8.0 concentration linearly increased the rumen fluid pH, the molar percentage of acetate and isobutyrate, acetate-to-propionate ratio, and ammonia nitrogen concentration, but linearly decreased the molar percentages of propionate and valerate. The total VFA concentration and the molar percentages of butyrate and isovalerate remained unchanged. Meanwhile, the increase in the peNDF8.0 concentration of the diet linearly increased the activities of carboxymethyl cellulase, avicelase, β-glucanase, and ferulic acid esterase in rumen fluid, but did not affect the activities of xylanase. Total plasma antioxidant capacity, γ-glutamyl transpeptidase activity, and plasma concentrations of total protein, albumin, creatinine, and malondialdehyde were linearly decreased by the increased dietary peNDF8.0 concentration. The increase in peNDF8.0 concentration raised the plasma concentrations of glucose, triglyceride, cholesterol, and blood urea nitrogen. Somatic cell counts in the milk were positively correlated with the dietary peNDF8.0 concentration. The feed and milk energy efficiencies were unaffected by the treatments. Shortening the total mixed ration mixing time may be a practical strategy to increase the peNDF8.0 concentration and reduce the risk of SARA in dairy cows fed high-concentrate diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号