首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Insulin binds to the alpha subunit of the insulin receptor which activates the tyrosine kinase in the beta subunit and tyrosine-phosphorylates the insulin receptor substrates-1 (IRS-1). Insulin promotes the formation of a complex between tyrosine-phosphorylated IRS-1 and several proteins including phosphoinositide(PI) 3-kinase, a heterodimer consisting of regulatory 85-kDa (p85) and catalytic 110-kDa (p110) subunits, GRB2 and Syp via the Src homology region 2 (SH2) domains. Recently, it was suggested that GRB2-Sos complex binding to IRS-1 was linked to Ras activation and that PI 3-kinase binding to IRS-1 was linked to activation of glucose transport. Since the mechanism of insulin-stimulated glucose uptake is mainly due to translocation of glucose transporters from an intracellular vesicle pool to the plasma membrane, PI 3-kinase activity may be involved in vesicle transport in mammalian cells.  相似文献   

2.
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by association with a variety of tyrosine kinase receptors and intracellular tyrosine-phosphorylated substrates. We isolated a cDNA that encodes a 50-kDa regulatory subunit of PI 3-kinase with an expression cloning method using 32P-labeled insulin receptor substrate-1 (IRS-1). This 50-kDa protein contains two SH2 domains and an inter-SH2 domain of p85alpha, but the SH3 and bcr homology domains of p85alpha were replaced by a unique 6-amino acid sequence. Thus, this protein appears to be generated by alternative splicing of the p85alpha gene product. We suggest that this protein be called p50alpha. Northern blotting using a specific DNA probe corresponding to p50alpha revealed 6.0- and 2.8-kb bands in hepatic, brain, and renal tissues. The expression of p50alpha protein and its associated PI 3-kinase were detected in lysates prepared from the liver, brain, and muscle using a specific antibody against p50alpha. Taken together, these observations indicate that the p85alpha gene actually generates three protein products of 85, 55, and 50 kDa. The distributions of the three proteins (p85alpha, p55alpha, and p50alpha), in various rat tissues and also in various brain compartments, were found to be different. Interestingly, p50alpha forms a heterodimer with p110 that can as well as cannot be labeled with wortmannin, whereas p85alpha and p55alpha associate only with p110 that can be wortmannin-labeled. Furthermore, p50alpha exhibits a markedly higher capacity for activation of associated PI 3-kinase via insulin stimulation and has a higher affinity for tyrosine-phosphorylated IRS-1 than the other isoforms. Considering the high level of p50alpha expression in the liver and its marked responsiveness to insulin, p50alpha appears to play an important role in the activation of hepatic PI 3-kinase. Each of the three alpha isoforms has a different function and may have specific roles in various tissues.  相似文献   

3.
The cellular effects of MCP-1 are mediated primarily by binding to CC chemokine receptor-2. We report here that MCP-1 stimulates the formation of the lipid products of phosphatidylinositol (PI) 3-kinase, namely phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate (PI 3,4,5-P3) in THP-1 cells that can be inhibited by pertussis toxin but not wortmannin. MCP-1 also stimulates an increase in the in vitro lipid kinase activity present in immunoprecipitates of the class 1A p85/p110 heterodimeric PI 3-kinase, although the kinetics of activation were much slower than observed for the accumulation of PI 3,4,5-P3. In addition, this in vitro lipid kinase activity was inhibited by wortmannin (IC50 = 4.47 +/- 1.88 nM, n = 4), and comparable concentrations of wortmannin also inhibited MCP-stimulated chemotaxis of THP-1 cells (IC50 = 11.8 +/- 4.2 nM, n = 4), indicating that p85/p110 PI 3-kinase activity is functionally relevant. MCP-1 also induced tyrosine phosphorylation of three proteins in these cells, and a fourth tyrosine-phosphorylated protein co-precipitates with the p85 subunit upon MCP-1 stimulation. In addition, MCP-1 stimulated lipid kinase activity present in immunoprecipitates of a class II PI 3-kinase (PI3K-C2alpha) with kinetics that closely resembled the accumulation of PI 3,4,5-P3. Moreover, this MCP-1-induced increase in PI3K-C2alpha activity was insensitive to wortmannin but was inhibited by pertussis toxin pretreatment. Since this mirrored the effects of these inhibitors on MCP-1-stimulated increases in D-3 phosphatidylinositol lipid accumulation in vivo, these results suggest that activation of PI3K-C2alpha rather than the p85/p110 heterodimer is responsible for mediating the in vivo formation of D-3 phosphatidylinositol lipids. These data demonstrate that MCP-1 stimulates protein tyrosine kinases as well as at least two separate PI 3-kinase isoforms, namely the p85/p110 PI 3-kinase and PI3K-C2alpha. This is the first demonstration that MCP-1 can stimulate PI 3-kinase activation and is also the first indication of an agonist-induced activation of the PI3K-C2alpha enzyme. These two events may play important roles in MCP-1-stimulated signal transduction and biological consequences.  相似文献   

4.
Mammalian phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in the regulation of various cellular, receptor tyrosine kinase-mediated processes, such as mitogenesis and transformation. PI 3-kinase is composed of a 110-kDa catalytic subunit and a regulatory subunit of 85 kDa or 55 kDa. We have cloned a gene for a regulatory subunit from Drosophila melanogaster, named droPIK57, from head-specific cDNA libraries. The droPIK57 gene encodes a protein containing two SH2 domains with significant sequence homology to those in p85 and p55. Like the p55 subunits, DroPIK57 is missing the SH3 domain and the bcr homology region of the p85 subunit. The short N-terminus as well as the C-terminus of the DroPIK57 protein show no identity to the known PI 3-kinase subunits, suggesting that it is a new member in the family of regulatory subunits. In-situ hybridization and Northern blot analysis indicate a widespread function of this gene during embryogenesis and in the CNS.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI3K) is a heterodimer lipid kinase consisting of an 85-kD subunit bound to a 110-kD catalytic subunit that also possesses intrinsic, Mn(2+)-dependent protein serine kinase activity capable of phosphorylating the 85-kD subunit. Here, we examine the Mn(2+)-dependent protein kinase activity of PI3K alpha immunoprecipitated from normal resting or thrombin-stimulated platelets, and characterize p85/p110 phosphorylation, in vitro. Phosphoamino acid analysis of phosphorylated PI3K alpha showed p85 and p110 were phosphorylated on serine, but in contrast to previous results, were also phosphorylated on threonine and tyrosine. Wortmannin and LY294002 inhibited p85 phosphorylation; however, p110 phosphorylation was also inhibited suggesting p110 autophosphorylation on serine/threonine. The protein tyrosine kinase inhibitor, erbstatin analog, partially inhibited p85 and p110 phosphorylation but did not appear to affect PI3K lipid kinase activity. The in vitro phosphorylation of p85 alpha or p110 alpha derived from thrombin-stimulated platelets was no different than that of resting platelets, but we confirm that in thrombin receptor-stimulated platelets enhanced levels of p85 alpha and PI3K lipid kinase activity were recovered in antiphosphotyrosine antibody immunoprecipitates. These results suggest PI3K alpha can autophosphorylate on serine and threonine, and both p85 alpha and p110 alpha are substrates for a constitutively-associated protein tyrosine kinase in platelets.  相似文献   

6.
We have reported that fMLP-induced activation of pertussis toxin-sensitive GTP-binding proteins in THP-1 cells potentiates the insulin-induced accumulation of PtdIns(3,4,5)P3, a product of phosphoinositide 3-kinase (T. Okada et al., Biochem. J. 317, 475-480, 1996). The synergism in PtdIns(3,4,5)P3 accumulation was observed in Chinese hamster ovary cells expressing both insulin and fMLP receptors. In rat adipocytes, which represent the physiological target cells of insulin, receptor-mediated activation of GTP-binding protein by adenosine and prostaglandin E2 potentiated the insulin-induced PtdIns(3,4,5)P3 accumulation. In cell-free systems, the activity of the p85/p110beta subtype of phosphoinositide 3-kinase was, while that of p85/p110alpha was not, stimulated by the betagamma subunits of the GTP-binding proteins. We propose here a hypothesis that the p85/p110beta subtype is under the control of both the insulin receptors and the GTP-binding protein-coupled receptors in intact cell systems.  相似文献   

7.
We have previously reported that different putative CD4 ligands (anti-CD4 antibody, gp160 from HIV, synthetic peptides analogous to the residues 35-46 of HLA class II beta1 chain and residues 134-148 of HLA class II beta2 chain) down-regulate LFA-1-dependent adhesion between CD4+ T cells and HLA class II+ B cells, and also activate p56lck and the phosphatidylinositol-3 kinase (PI3-kinase) associated with the CD4-p56lck complex. It was demonstrated that the latter activation was dependent on the CD4-p56lck association. Since these results suggest a relationship between p56lck and PI3-kinase, we investigated whether PI3-kinase was tyrosine phosphorylated after CD4 binding and whether this phosphorylation was also dependent on the CD4-p56lck association. We show herein that CD4 binding increased tyrosine phosphorylation of the catalytic subunit p110 of PI3-kinase but not of the p85 subunit. Association between p56lck and PI3-kinase was constitutive, and was not modified after CD4 binding. In contrast, p110 tyrosine phosphorylation was inducible, transient and dependent on the CD4-p56lck association. The role of the tyrosine phosphorylation of p110-PI3-kinase following ligand binding to CD4 is unknown. We speculate that this event could link the activation of p56lck and of PI3-kinase after CD4 binding.  相似文献   

8.
We have previously shown that phosphatidylinositol 3-kinase alpha (PI 3-Kalpha) (p85alpha-p110alpha) is required for DNA synthesis induced by various growth factors (S. Roche, M. Koegl, and S. A. Courtneidge, Proc. Natl. Acad. Sci. USA 91:9185-9189, 1994) in fibroblasts. In the present study, we have investigated the function of PI 3-Kbeta (p85alpha-p110beta) during mitogenesis. By using antibodies specific to p110beta we showed that PI 3-Kbeta is expressed in NIH 3T3 cells. PI 3-Kbeta and PI 3-Kalpha have common features: PI 3-Kbeta is tightly associated with a protein serine kinase that phosphorylates p85alpha, it interacts with the Src-middle T antigen complex and the activated platelet-derived growth factor (PDGF) receptor in fibroblasts in vivo, and it becomes tyrosine phosphorylated after PDGF stimulation. PI 3-Kbeta was also activated in Swiss 3T3 and Cos7 cells stimulated with lysophosphatidic acid (LPA), a mitogen that interacts with a heterotrimeric G protein-coupled receptor. In contrast PI 3-Kalpha was activated to a lesser extent in these cells. Microinjection of neutralizing antibodies specific for p110beta into quiescent fibroblasts inhibited DNA synthesis induced by both insulin and LPA but poorly affected PDGF receptor signaling. Therefore, PI 3-Kbeta plays an important role in transmitting the mitogenic response induced by some, but not all, growth factors. Finally, we show that while oncogenic V12Ras interacts with type I PI 3-Ks, it could induce DNA synthesis in the absence of active PI 3-Kalpha and PI 3-Kbeta, suggesting that Ras uses other effectors for DNA synthesis.  相似文献   

9.
We propose a novel model for the regulation of the p85/pl10alpha phosphatidylinositol 3'-kinase. In insect cells, the p110alpha catalytic subunit is active as a monomer but its activity is decreased by coexpression with the p85 regulatory subunit. Similarly, the lipid kinase activity of recombinant glutathione S-transferase (GST)-p110alpha is reduced by 65 to 85% upon in vitro reconstitution with p85. Incubation of p110alpha/p85 dimers with phosphotyrosyl peptides restored activity, but only to the level of monomeric p110alpha. These data show that the binding of phosphoproteins to the SH2 domains of p85 activates the p85/p110alpha dimers by inducing a transition from an inhibited to a disinhibited state. In contrast, monomeric p110 had little activity in HEK 293T cells, and its activity was increased 15- to 20-fold by coexpression with p85. However, this apparent requirement for p85 was eliminated by the addition of a bulky tag to the N terminus of p110alpha or by the growth of the HEK 293T cells at 30 degrees C. These nonspecific interventions mimicked the effects of p85 on p110alpha, suggesting that the regulatory subunit acts by stabilizing the overall conformation of the catalytic subunit rather than by inducing a specific activated conformation. This stabilization was directly demonstrated in metabolically labeled HEK 293T cells, in which p85 increased the half-life of p110. Furthermore, p85 protected p110 from thermal inactivation in vitro. Importantly, when we examined the effect of p85 on GST-p110alpha in mammalian cells at 30 degrees C, culture conditions that stabilize the catalytic subunit and that are similar to the conditions used for insect cells, we found that p85 inhibited p110alpha. Thus, we have experimentally distinguished two effects of p85 on p110alpha: conformational stabilization of the catalytic subunit and inhibition of its lipid kinase activity. Our data reconcile the apparent conflict between previous studies of insect versus mammalian cells and show that p110alpha is both stabilized and inhibited by dimerization with p85.  相似文献   

10.
Pleckstrin, the prototypic protein containing two copies of the pleckstrin homology domain, is a prominent substrate of protein kinase C in platelets and neutrophils. Both cell types have p85 subunit-containing phosphoinositide 3-kinase (p85/PI3K) and non-p85-containing PI3K (PI3Kgamma) that is activated by betagamma subunits of heterotrimeric GTP-binding proteins. We have shown that a PI3K product, phosphatidylinositol (PI) 3,4,5-trisphosphate, promotes pleckstrin phosphorylation in platelets. Since pleckstrin homology domains are thought to interact with Gbetagamma heterodimers and/or PI(4,5)P2, we have examined the effects of recombinant pleckstrins on platelet PI3Kgamma and p85/PI3K activities. Depending upon its phosphorylation/charged state, pleckstrin inhibits PI3Kgamma, but not p85/PI3K. Pleckstrin-mediated inhibition of PI3Kgamma is overcome by excess Gbetagamma and is restricted to PI(4,5)P2 as substrate, i.e. pleckstrin does not inhibit phosphorylation of PI()P or PI. Consistent with this, activation of protein kinase C by exposure of platelets to beta-phorbol diester (to increase endogenous pleckstrin phosphorylation) prior to platelet lysis causes inhibition of Gbetagamma-stimulatable PI3K activity only with respect to PI(4,5)P2 substrate. This phosphopleckstrin-mediated inhibition is overcome by increasing concentrations of Gbetagamma. We propose that phosphorylation of pleckstrin may constitute an important inhibitory mechanism for PI3Kgamma-mediated cell signaling.  相似文献   

11.
The focal adhesion kinase (FAK) has been implicated in signal transduction pathways initiated by cell adhesion receptor integrins and by neuropeptide growth factors. To gain insight into FAK function, we examined the potential interaction of FAK with intracellular signaling molecules containing the Src homology 2 domains. We report here the stable association of FAK with phosphatidylinositol 3-kinase (PI3-kinase; EC 2.7.1.137) in NIH 3T3 mouse fibroblasts. This interaction was stimulated by cell adhesion concomitant with FAK activation. We also found that recombinant FAK bound to the p85 subunit of PI 3-kinase directly in vitro and that autophosphorylation of recombinant FAK in vitro increased its binding to PI 3-kinase. We detected increased tyrosine phosphorylation of the p85 subunit of PI 3-kinase during cell adhesion and observed direct phosphorylation of p85 by FAK in vitro. Together, these results suggest that PI 3-kinase may be a FAK substrate in vivo and serve as an effector of FAK.  相似文献   

12.
13.
14.
Heterodimeric class IA phosphoinositide 3-kinase (PI 3-kinase) plays a crucial role in a variety of cellular signalling events downstream of a number of cell-surface receptor tyrosine kinases. Activation of the enzyme is effected in part by the binding of two Src homology-2 domains (SH2) of the 85 kDa regulatory subunit to specific phosphotyrosine-containing peptide motifs within activated cytoplasmic receptor domains. The solution structure of the uncomplexed C-terminal SH2 (C-SH2) domain of the p85 alpha subunit of PI 3-kinase has been determined by means of multinuclear, double and triple-resonance NMR experiments and restrained molecular-dynamics simulated-annealing calculations. The solution structure clearly indicates that the uncomplexed C-SH2 domain conforms to the consensus polypeptide fold exhibited by other SH2 domains, with an additional short helical element at the N terminus. In particular, the C-SH2 structure is very similar to both the p85 alpha N-terminal SH2 domain (N-SH2) and the Src SH2 domain with a root mean square difference (rmsd) for 44 C alpha atoms of 1.09 and 0.89 A, respectively. The canonical BC, EF and BG loops are less well-defined by the experimental restraints and show greater variability in the ensemble of C-SH2 conformers. The lower level of definition in these regions may reflect the presence of conformational disorder, an interpretation supported by the absence or broadening of backbone and side-chain NMR resonances for some of these residues. NMR experiments were performed, where C-SH2 was titrated with phosphotyrosine-containing peptides corresponding to p85 alpha recognition sites in the cytoplasmic domain of the platelet-derived growth-factor receptor. The ligand-induced chemical-shift perturbations indicate the amino-acid residues in C-SH2 involved in peptide recognition follow the pattern predicted from homologous complexes. A series of C-SH2 mutants was generated and tested for phosphotyrosine peptide binding by surface plasmon resonance. Mutation of the invariant Arg36 (beta B5) to Met completely abolishes phosphopeptide binding. Mutation of each of Ser38, Ser39 or Lys40 in the BC loop to Ala reduces the affinity of C-SH2 for a cognate phosphopeptide, as does mutation of His93 (BG5) to Asn. These effects are consistent with the involvement of the BC loop and BG loops regions in ligation of phosphopeptide ligands. Mutation of Cys57 (beta D5) in C-SH2 to Ile, the corresponding residue type in the p85 alpha N-SH2 domain, results in a change in peptide binding selectivity of C-SH2 towards that demonstrated by p85 alpha N-SH2. This pattern of p85 alpha phosphopeptide binding specificity is interpreted in terms of a model of the p85 alpha/PDGF-receptor interaction.  相似文献   

15.
16.
The ligation and clustering of cell surface alphabeta heterodimeric integrins enhances cell adhesion and initiates signaling pathways that regulate such processes as cell spreading, migration, differentiation, proliferation and apoptosis. Here we show that insulin treatment of Chinese hamster ovary cells expressing insulin receptors (CHO-T) markedly promotes cell adhesion onto a fibronectin matrix, but not onto bovine serum albumin or poly-lysine. Incubation of cells with a GRGDSP peptide that specifically binds integrins (but not the nonspecific GRADSP peptide) abolishes this insulin effect, as does the potent phosphoinositide 3-kinase (PI 3-kinase) inhibitor wortmannin. Moreover, a specific blocking monoclonal anti-alpha5beta1 integrin antibody, PB-1, blocks insulin-stimulated cell adhesion onto fibronectin. Conversely, activating alpha5beta1 integrins on CHO-T cells by adherence onto fibronectin markedly potentiates the action of insulin to enhance insulin receptor and insulin receptor substrate (IRS)-1 tyrosine phosphorylation. Activation of alpha5beta1 integrin also markedly potentiates the recruitment of p85-associated PI 3-kinase activity to IRS-1 in response to submaximal levels of insulin in CHO-T cells. These data indicate that insulin potently activates integrin alpha5beta1 mediated CHO-T cell adhesion, while integrin alpha5beta1 signaling in turn enhances insulin receptor kinase activity and formation of complexes containing IRS-1 and PI 3-kinase. These findings raise the hypothesis that insulin receptor and alpha5beta1 integrin signaling act synergistically to enhance cell adhesion.  相似文献   

17.
Two T cell-specific src-family tyrosine kinases, p56 lck (lck) and p59 fyn (fyn), are implicated in regulating PI 3-kinase activity in response to interleukin-2 (IL-2), a cytokine that induces T cell proliferation. The src- homology domains 3 (SH3) of src-family kinases can directly interact with the PI 3-kinase regulatory subunit p85 and this may be a mechanism to regulate PI 3-kinase activity. In order to understand the mode of PI 3-kinase activation by the IL-2 receptor, we examined the association of PI 3-kinase to SH2 and SH3 domains of lck and fyn in IL-2-dependent kit 225 cells. The fyn SH3 domain bound more PI 3-kinase and its p85 subunit than the lck SH3 domain, while the lck SH2 domain bound more PI 3-kinase than the fyn SH2 domain. None of these interactions were regulated by IL-2. Low binding of PI 3-kinase to the lck SH3 domain was not observed in IL-2-independent Jurkat T cells. Thus, SH3 and SH2 domains of lck and fyn bound different amounts of PI 3-kinase, a feature that was dependent on a T cell type, but was not influenced by IL-2.  相似文献   

18.
Peripheral blood cell DNA from a patient with a chronic myeloproliferative disorder was tested in the tumorigenicity assay. Upon tumor induction in nude mice we isolated a human oncogene by means of genomic cloning, exon trap analysis and cDNA cloning. Sequence analysis revealed a fusion product of the p85beta subunit of phosphatidylinositol (PI) 3-kinase and HUMORF8, a putative deubiquitinating enzyme, which has been generated during the DNA transfection process. Application of the tumorigenicity assay to various p85beta and HUMORF8 cDNA constructs indicated that the recombination of both genes rather than the truncation of one of the fusion partners renders the chimeric protein tumorigenic. Moreover, sequence analysis of human wildtype p85beta revealed an alanine for serine substitution at a site important for the regulation of the lipid kinase activity of PI 3-kinase in human p85alpha. This variation may relate to differences in the mode of signal transduction from both p85 isoforms.  相似文献   

19.
Members of the beta isozyme subfamily of phosphatidylinositol-specific phospholipase C (PLC) are stimulated by alpha subunits and betagamma dimers of heterotrimeric guanine-nucleotide-binding proteins (G proteins). Myeloid differentiated human HL-60 granulocytes and bovine neutrophils contain a soluble phospholipase C, which is stimulated by the metabolically stable GTP analogue guanosine (5'-->O)-3-thiotriphosphate (GTP[S]). To identify the component(s) involved in mediating this stimulation, the relevant polypeptide(s) was resolved from endogenous phospholipase C and purified from bovine neutrophil cytosol by measuring its ability to confer GTP[S] stimulation to exogenous recombinant PLCbeta2. The resolved factor, which behaved as 48-kDa protein upon gel filtration, stimulated PLCbeta2 but not PLCbeta1 or PLCdelta1. Activation of phosphatidylinositol 4-phosphate 5-kinase was not involved in this stimulation. The purified stimulatory factor consisted of two polypeptides of molecular masses of approximately 23 kDa and 26 kDa. The protein stimulated a deletion mutant of PLCbeta2 that lacked a carboxyl-terminal region necessary for stimulation by members of the alpha(q) subfamily of the G-protein alpha subunits. The results of this study suggest that a GTP-binding protein distinct from alpha(q) subunits, probably a low-molecular-mass GTP-binding protein associated with a regulatory protein, is involved in isozyme-specific activation of PLCbeta2.  相似文献   

20.
p85/p110 phosphoinositide 3-kinase (PI3K) is a heterodimer composed of a p85-regulatory and a p110-catalytic subunit, which is involved in a variety of cellular responses including cytoskeletal organization, cell survival and proliferation. We describe here the cloning and characterization of p65-PI3K, a mutant of the regulatory subunit of PI3K, which includes the initial 571 residues of the wild type p85alpha-protein linked to a region conserved in the eph tyrosine kinase receptor family. We demonstrate that this mutation, obtained from a transformed cell, unlike previously engineered mutations of the regulatory subunit, induces the constitutive activation of PI3K and contributes to cellular transformation. This report links the PI3K enzyme to mammalian tumor development for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号