首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以丙烯酰胺(AM)、N-异丙基丙烯酰胺(NIPAM)为单体,过硫酸铵(APS)-亚硫酸氢钠(SBS)为氧化-还原引发体系,N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,制备了亲水型温敏凝胶P(NIPAM-co-AM)。研究了投料比AM/NIPAM对凝胶性能的影响。结果表明:随着凝胶体系中亲水单体AM比例的增大,共聚凝胶溶胀率、保水率、硬度均提高。当AM从0增大到100%时,凝胶硬度从84.929g增为1255.222g。DSC表明,当AM含量从2%提高到10%时,凝胶LCST从38.61℃增加到57.95℃。随着AM比例降低,凝胶LCST向低温方向移动,相变范围温敏性越好。  相似文献   

2.
首先合成了二丙烯酰基封端的聚乙二醇(PEG)大分子交联剂,然后使其与N,N-亚甲基双丙烯酰胺(BIS)和(N-异丙基丙烯酰胺)(NIPAM)单体进行交联反应,制备了PNIPAM-co-PEG-co-BIS水凝胶。与通常的PNIPAM-co-BIS凝胶比较,PNIPAM-co-PEG-co-BIS凝胶显示了明显加速的去溶胀动力学。这种加速的去溶胀性能归因于凝胶中的PEG组分为凝胶提供了亲水通道,在缩水过程中有利于凝胶的脱水。  相似文献   

3.
黎亚丽  王潮霞 《精细化工》2013,30(3):259-263
以丙烯酰胺(AM)、N-异丙基丙烯酰胺(NIPAM)为单体,过硫酸铵(APS)-亚硫酸氢钠(SBS)为氧化-还原引发体系,N,N'-亚甲基双丙烯酰胺(BIS)为交联剂,制备了亲水型温敏凝胶P(NIPAM-co-AM)。研究了投料比m(AM)/m(NIPAM)对凝胶性能的影响。结果表明,随着凝胶体系中亲水单体AM比例的增大,共聚凝胶溶胀率、保水率、硬度均提高。当AM质量分数从0增大到100%时,凝胶硬度从84.929 g增为1 252.222 g。DSC表明,当AM质量分数从2%提高到10%时,凝胶LCST从38.61℃增加到57.95℃。随着AM比例降低,凝胶LCST向低温方向移动,相变范围温敏性越好。  相似文献   

4.
以异丙基丙烯酰胺(NIPAAm)和羟甲基丙烯酰胺(NHMAm)为共聚单体与壳聚糖(CS)制备形成了温度敏感和pH敏感的互穿网络(IPN)水凝胶Poly(NIPAAm-co-NHMAm)/CS;用红外光谱表征了其结构特征,研究了不同条件下水凝胶的溶胀性能,并初步研究了水凝胶对药物双氯芬酸钠(DS)的缓释效果。结果表明,该水凝胶具有明显的温度和pH敏感性,温度越高,溶胀度越小,释药越慢;pH越小,溶胀度越大;CS含量为0.6%时溶胀度最大。在NHMAm单体质量配比为8.7%时,水凝胶的低临界溶液温度(LCST)达到38℃,且此时对DS持续释药时间可达到24 h。水凝胶的释药动力学曲线符合修正的一级动力学模型。该水凝胶体系可通过改变NHMAm单体配比来调节温敏特性,是一种潜在的温度和pH双重敏感的药物缓释载体。  相似文献   

5.
采用N-异丙基丙烯酰胺(NIPA)与N-乙烯基-2-吡咯烷酮(NVP)为共聚单体,以N,N-亚甲基双丙烯酰胺(BIS)为交联剂,过硫酸钾(KPS)为引发剂,通过化学交联的方法在水溶液中制备出P(NIPA-co-NVP)共聚物水凝胶。分别探讨了单体配比、交联剂用量等实验条件对水凝胶的温敏特性和溶胀性能的影响。利用傅里叶红外(FT-IR)对共聚物水凝胶的结构进行了表征。通过实验可知:当交联剂BIS和引发剂KPS分别为单体用量的5%和0.8%,制备的水凝胶具有较高的转化率、较好的机械强度和共聚性质。共聚物水凝胶中NVP含量越高,溶胀率越大,升温时溶胀率下降程度越大,自然条件下脱水速率越快;BIS用量越大,溶胀率越小,保水率越高,需要更长时间达到溶胀平衡。  相似文献   

6.
文章通过N-异丙基丙烯酰胺(NIPAAm)同马来酸酐(MAH)改性的β-环糊精发生共聚反应得到一种新型温敏性共聚物,表征确认其结构,并对其温敏性能进行了研究。结果:由于环糊精单元的引入,产品较NIPAAm均聚物有更高的最低临界共溶温度(LCST),环糊精单元在产品中所占的比例越多,其LCST值越大,并且在高pH和低离子浓度环境下,产品有更高的LCST。  相似文献   

7.
通过沉淀聚合法制备了具有pH/温度双重敏感且形态较规则的聚(N-异丙基丙烯酰胺-co-丙烯酸)(P(NIPAAm-co-AAc)微凝胶,考察了交联剂的用量对微凝胶形态的影响。相关测试发现:P(NIPAAm-co-AAc)微凝胶的临界相转变温度(LCST)的大小与丙烯酸(AAc)的用量有关。AAc含量的增大使微凝胶的LCST增大。不含AAc的PNIPAAm,微凝胶溶液的pH敏感性很微弱。在碱性条件下,AAc含量过多的微凝胶溶液已基本丧失温敏性。遴选出合适配方并在模拟人体体温(37℃)和胃肠液pH值(pH值7)的条件下进行了药物(阿司匹林)缓释实验,发现以该微凝胶为药物载体,能更好地达到药物长期有效释放的目的。  相似文献   

8.
以微波为辐射源,对丙烯酸(AA)水溶液进行辐照制得了PAA水凝胶。将脱水后的PAA水凝胶浸泡于含引发剂过硫酸钾(K_2S_2O_8)和交联剂N,N’-亚甲基双丙烯酰胺(BIS)的N-异丙基丙烯酰胺(NIPAAm)水溶液中,待溶胀平衡后取出,进行第二次微波辐照反应,制备了聚丙烯酸/聚N-异丙基丙烯酰胺互穿聚合物网络(PAA/PNIPAAm IPN)水凝胶,并对其溶胀性能进行了研究。研究结果表明,合成的IPN水凝胶兼具pH敏感性和温度敏感性,有望在药物控制释放领域得到应用。  相似文献   

9.
采用自由基聚合反应,在20℃调节单体的浓度及交联剂的用量合成了聚N-异丙基丙烯酰胺均聚凝胶,对材料的结构进行了表征和分析,同时研究了单体浓度及交联剂用量对材料的温敏性、光学性能以及溶胀性能等的影响。实验结果表明:凝胶的温敏性及透射比随单体浓度及交联剂用量的增加而降低,其初始溶胀度随单体浓度及交联剂用量的增加而增加,体积相转变温度保持为34℃,不随单体浓度及交联剂用量而改变。  相似文献   

10.
利用IPN技术合成了一种具有温度和pH双重敏感性的聚(N-异丙基丙烯酰胺)/聚丙烯酸半互穿网络微凝胶(PNIPAM/PAAc semi-IPN)。这种微凝胶在酸性条件下发生典型的体积相转变;而在弱碱性条件下,当温度低于聚(N-异丙基丙烯酰胺)(PNIPAM)微凝胶的体积相转变温度(VPTT)时,微凝胶的粒径随着温度的上升而增大,当温度达到VPTT后,粒径突然急剧减小,并随着温度的逐渐上升而减小,最终趋向平衡。  相似文献   

11.
Temperature-sensitive hydrogel-poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2U·mg-1 to 5038.8U·mg-1. With the addition of faster response PNIPA gel beads, the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution. The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates, thus enhanced the protein  相似文献   

12.
Temperature-sensitive hydrogel-poly(N-isopropyl acrylamide) (PNIPA) was prepared and applied to protein refolding. PNIPA gel disks and gel particles were synthesized by the solution polymerization and inverse suspension polymerization respectively. The swelling kinetics of the gels was also studied. With these prepared PNIPA gels, the model protein lysozyme was renatured. Within 24 h, PNIPA gel disks improved the yield of lysozyme activity by 49.3% from 3375.2 U.mg-1 to 5038.8 U.mg-1. With the addition of faster response PNIPA gel beads,the total lysozyme activity recovery was about 68.98% in 3h, as compared with 42.03% by simple batch dilution.The novel refolding system with PNIPA enables efficient refolding especially at high protein concentrations. Discussion about the mechanism revealed that when PNIPA gels were added into the refolding buffer, the hydrophobic interactions between denatured proteins and polymer gels could prevent the aggregation of refolding intermediates,thus enhanced the protein renaturation.  相似文献   

13.
A novel hydrogel of P(NIPAM‐co‐SA) copolymer was synthesized by inverse suspension polymerization by adding sodium acrylate (SA) to improve the phase transition properties of poly(N‐isopropylacrylamide) (PNIPAM). The morphologies, size distribution and thermosensitive characteristics of gel particles were studied and the maximal swelling ratio and LCST (Lower Critical Solution Temperature) of gel particles increased obviously with the addition of SA comonomer. When the protein concentration was 250 μg/mL, the optimized refolding conditions of denatured lysozyme with P(NIPAM‐co‐SA) hydrogel were that operating at the temperature of 35°C and a urea concentration of 2M, in which the mass ratio of P(NIPAM‐co‐SA) hydrogel with 4% SA copolymerized to lysozyme was 10 : 1. Under the optimized conditions, the activity recovery of lysozyme increased to 76.5% assisted by P(NIPAM‐co‐SA) gel particles compared with 55.6% by simple dilution. When refolding finished, the gel particles could be removed and recovered easily and the activity recovery of lysozyme was still as high as 61.5% after reused for 5 batches. With the addition of different amounts of SA comonomer, the hydrophobicity of the copolymer could be varied. Then the copolymerized hydrogel inhibits protein molecules aggregation more effectively through the moderate hydrophobic interactions between copolymers and protein molecules in the course of lysozyme refolding compared with the presence of PNIPAM polymer. All results above demonstrate that the P(NIPAM‐co‐SA) is a cost effective additive with tunable hydrophobicity for application in the refolding of recombinant proteins expressed as inclusion bodies in vitro. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Grafting of N-isopropylacrylamide, NIPAAm, onto partially and fully hydrolyzed poly(vinyl alcohol–g-maleic anhydride), PVA–MA, was carried out in presence of ammonium persulfate as initiator. The crosslinked PVA–MA–NIPAAm copolymers were prepared in presence of different weight percentages of methylene bisacrylamide, MBA, as crosslinker and N,N,N,N′-tetramethylethylenediamine, TMEA, as accelerator. Crosslinked PVA–MA–NIPAAm copolymers were prepared at two different temperatures 5 and 55 °C. The structural features of these grafts were confirmed by 1H NMR analysis. Solution behaviors of both PVA–MA and PVA–MA–NIPAAm were evaluated from viscosity measurements. The swelling ratios of the crosslinked polymers were measured at different temperatures and pH values. The phase transition of the crosslinked gels was measured from DSC analysis. Crosslinked PVA–MA–NIPAAm grafts show different pH and temperature sensitivity. The swelling behaviors of PVA–MA–NIPAAm were referred to formation of hydrogen bonding between amide and carboxylic groups and also to hydrophobic aggregation of NIPAAm grafts.  相似文献   

15.
Poly(sodium acrylate) (PNaA) based nanocomposites were synthesized using different nanosilver loadings via redox solution polymerization at room temperature and under full exposure to the atmosphere. The nanocomposites exhibited increasing antibacterial activity with increased nanosilver content. Biocompatibility was determined using an MTT assay; no significant cytotoxicity was observed at the examined nanosilver loadings. Adhesion was measured using a tensile test and the stress versus strain curve showed an acceptable stress development in the model tissue using bioadhesive containing 2 wt% nanosilver. Introducing a second, more degradable polymer to the system as an interpenetrating polymer network enabled tuning the bioadhesive degradation rate.  相似文献   

16.
使用溴乙酰溴对第四代聚丙烯亚胺树枝状大分子 (DAB-32)进行改性,成功合成了树枝状大分子引发剂DAB-32-Br。以DAB-32-Br/CuBr/Bpy为催化引发体系,分别在水和水/乙醇反应介质中,实现了N-异丙基丙烯酰胺(NIPAAm)的原子转移自由基聚合(ATRP),得到粒径在60-150 nm范围内的树枝状大分子/聚(N-异丙基丙烯酰胺)纳米粒子。与水介质中ATRP相比,在水/乙醇介质中所得聚合物纳米粒子更加规则,而且粒子间聚集程度较低。  相似文献   

17.
以C6F13I为链转移剂,通过碘转移乳液聚合制得碘封端的聚偏氟乙烯(PVDF-I),再以PVDF-I为大分子链转移剂进行N-乙烯基吡咯烷酮碘转移溶液聚合,得到聚偏氟乙烯-b-聚乙烯基吡咯烷酮(PVDF-b-PVP)两亲性嵌段共聚物;采用NMR、IR、XRD、DSC和AFM等对PVDF-b-PVP嵌段共聚物的分子和相态结构进行了表征。发现PVP能有效嵌入PVDF与末端碘之间,PVDF嵌段PVP后,PVDF分子链的有序度明显降低,产生γ晶型PVDF,同时结晶温度和结晶度降低。PVDF-b-PVP嵌段共聚物表现微相分离结构,相分离尺寸约20 nm,其亲水性也优于PVDF均聚物。  相似文献   

18.
制备了对湿度和pH值具有双重敏感性的PAANa/PNIPAM互穿网络(IPN)材料,测定了IPN的平衡溶胀度和在不同湿度和pH中的溶胀度变化的行为。结果显示,这种材料能分别在32℃和pH为5.5发生溶胀行为的突变,溶胀度突变范围明显高于以往文献所报道的类似材料的变化值。根据它在温度变化和pH值变化中的溶胀行为可以得知,在网络中这两种分链是独立作用的,但是相互之间又有影响。  相似文献   

19.
A novel series of copolymeric acrylamide/potassium acrylate superabsorbents, blended with poly(vinyl alcohol), have been synthesized by using N, N′‐methylenebisacrylamide as a crosslinker and potassium persulphate (K2S2O8) as an initiator. Swelling behavior of these hydrogels in water was investigated; and on the basis of swelling properties, the diffusional behavior of water into these hydrogel systems was analyzed. It was observed that with the increase of amount of poly(vinyl alcohol) or crosslinking, the swelling of the hydrogels decreased. The hydrogel synthesized by addition of 5% poly(vinyl alcohol) and 0.25% crosslinking showed maximum swelling of 54445%. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1927–1931, 2005  相似文献   

20.
年产120吨聚丙烯酸钠絮凝剂的工艺设计与投产   总被引:2,自引:0,他引:2  
康正  崔英德等 《广州化工》2000,28(4):151-153
介绍了新开发的生产工艺过程及工艺条件,对120吨/年的工厂设备选型、工厂经济分析及其应用效果作了简要评述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号