首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
仿生机器人在定姿过程中受到空间扰动因素的影响容易产生控制误差,需要对机器人进行精确标定,提高仿生机器人的定位控制精度,因此提出一种基于双目视觉导航的仿生机器人鲁棒控制算法。利用光学CCD双目视觉动态跟踪系统进行仿生机器人的末端位姿参量测量,建立被控对象的运动学模型;以机器人的转动关节的6自由度参量为控制约束参量,建立机器人的分层子维空间运动规划模型;采用双目视觉跟踪方法实现仿生机器人的位姿自适应修正,实现鲁棒性控制。仿真结果表明,采用该方法进行仿生机器人控制的姿态定位时对机器人末端位姿参量的拟合误差较低,动态跟踪性能较好。  相似文献   

2.
水下六足机器人具有丰富的步态样式和冗余的肢体结构,凭借其离散式的地面支撑和对水下障碍、礁坪等复杂特殊地形的极强适应性,具有广泛的应用前景。本文通过充分的文献调研和总结,对目前水下六足机器人平台发展现状进行了综述。针对水下六足机器人的海底爬行能力,分别从稳定性判据、路径规划与自适应行走方法 3项关键技术进行了分析和总结;在稳定性判据方面,分别针对水下六足机器人静态稳定性判据与动态稳定性判据进行阐述;在路径规划方面,在目前典型陆地六足机器人路径规划方法的基础上,结合水下六足机器人独有的运动特性进行阐述;针对水下六足机器人自适应行走方面,分别阐述传统自适应调整方法与目前基于深度强化学习的方法进行介绍;最后对这些关键技术的未来发展趋势进行了展望。  相似文献   

3.
仿生六足步行机器人步态轨迹的研究与仿真   总被引:3,自引:1,他引:2  
针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与MSC.ADAMS软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析.通过仿真,验证了所设计的三角步态的适用性和所选择的三次样条曲线作为机器人足端点轨迹曲线方案的可行性.详细阐述了六足仿生步行机器人轨迹仿真的原理、方法及过程,找到了一种在ADAMS环境下求解机器人逆解的方法,简化了理论计算,提高了设计效率.  相似文献   

4.
六足微型仿生机器人及其控制系统的研究   总被引:9,自引:0,他引:9  
介绍了一种微型六足仿生机器人的结构与控制系统,分析了这种微型六足仿生机器人的移动原理,阐述了如何通过计算机来控制微型六足仿生机器人的运动,该机器人基于仿生学原理,结构独特,简单,新颖,能方便地实现前进和后退,其样相外形尺寸为:长30mm,宽40mm,高20mm,重6.3克,并对该样机进行了实验,实验结果表明该机器人具有较好的机动性。  相似文献   

5.
为了更好地控制六足仿生机器人适应野外作业环境,针对机器人野外定位问题,提出了一种六足仿生减灾救援机器人无线野外定位系统解决方案,方案以三星S3C2440为硬件平台,以嵌入式linux系统为软件平台,设计了六足仿生机器人野外定位系统。通过GPS全球定位系统进行六足仿生机器人的定位,利用GPRS实现网络通信,并将定位信息传输到终端设备,终端设备通过发送命令的方式控制六足仿生机器人实现相应的动作。实验证明:该系统的稳定性好,可靠性较高,能较好的满足六足仿生减灾救援机器人野外定位的需求。  相似文献   

6.
控制六足仿生机器人三角步态的研究   总被引:2,自引:1,他引:1  
基于仿生学原理,在分析六足昆虫运动机理的基础上,对六足仿生机器人的三角步态运动原理进行了分析.论文涉及六腿机器人步态研究的一些基本参数的描述,讨论了用相对运动的原理研究步态的方法,结合慧鱼机器人组合包中的构件拼出六足仿生机器人.该机器人模型结构简单,设计独特,能前进和后退,且能避开小型障碍物.基于三角步态运动原理对其进行了反复实验,实验结果表明六足仿生机器人具有较好的机动性和稳定性.  相似文献   

7.
六足移动式微型仿生机器人的研究   总被引:10,自引:1,他引:10  
徐小云  颜国正  丁国清  刘华  付轩  吴岩 《机器人》2002,24(5):427-431
本文描述了一种微型六足仿生机器人的结构与控制,分析了这种微型六足仿生机器人 的移动原理. 该机器人基于仿生学原理,结构独特、简单、新颖,能方便地实现前进和后退 ,其样机外形尺寸为:长30mm,宽40mm,高20mm,重6.3g.并对该样机进行了实验,实验 结果表明该机器人具有较好的机动性.  相似文献   

8.
由于六足仿生机器人的足数较多,控制其稳定行走较为复杂,针对控制六足机器人稳定行走的要求,该六足机器人的腿部是参照蚂蚁的腿部结构进行设计,并对其进行建模分析.整个系统在硬件上选取了Arduino、无线模块、显示模块、舵机控制板等;软件上选用Qt Creator在上位机上编程,用于远程遥控六足机器人及观察其行走状态变化;在步态控制上采用了三角步态控制算法.通过设计机械结构、建模分析以及硬件、软件和算法的结合,实现了六足仿生机器人的稳定行走.  相似文献   

9.
为了模仿动物卓越的运动能力和环境适应能力,提出了六足仿生机器人的轨迹跟踪控制方法。首先建立了机器人的运动学模型,接着通过转向参数将机器人的速度和角速度与中枢模式发生器(CPG)参数结合起来,设计了转换函数。然后通过转换函数将模型预测控制器和CPG网络结合起来,提出了基于CPG的模型预测控制器(MPC-CPG),并证明了其稳定性。最后对机器人跟踪圆周轨迹和直线轨迹进行了仿真和实验。实验表明,在有初始误差的条件下,机器人在MPC-CPG控制器的作用下能够快速地消除位置误差和航向角误差,跟踪上参考轨迹。轨迹跟踪的位置误差始终保持在-0.1~0.1 m,航向角误差保持在-27?~20?。在MPC-CPG控制器的作用下,机器人不仅具有较高的轨迹跟踪精度,同时还表现出良好的运动平滑性和协调性,进一步验证了所提出的MPC-CPG控制器的有效性。  相似文献   

10.
动态目标检测与目标跟踪是图像领域的热点研究问题,为研究其在移动机器人领域的应用价值,设计了六足机器人动态目标检测与跟踪系统。针对非刚体运动目标容易被检测为多个分散区域的问题提出区域合并算法,并通过对称匹配、自适应外点滤除对运动背景进行精确补偿,最终基于背景补偿法实现对运动目标的精确检测。研究了基于KCF(Kernel Correlation Filter)的目标跟踪算法在六足机器人平台上的应用,设计了自适应跟踪算法实现六足机器人对运动目标的角度跟踪。将运动目标检测及跟踪算法应用于六足机器人系统。实验表明,在六足机器人移动过程中,系统可对运动目标进行精确检测与跟踪。  相似文献   

11.
昝鹏  颜国正  于莲芝 《机器人》2007,29(3):219-223
根据尺蠖蠕动的原理,研制了一种三自由度微型机器人内窥镜诊疗系统;该机器人由空气压橡胶驱动器驱动,通过两个气囊钳位.建立了机器人的动态模型.基于BP神经网络PID控制策略,设计了电—气脉宽调制伺服系统控制机器人的移动.用系统输出的预测值来代替实测值,计算权系数的修正量,实时改变控制参数以提高控制效果.软件仿真和实验结果都证实该方法弥补了传统PID控制方法的不足,显著改善了系统的静动态特性,是一种理想的气动微型蠕动机器人控制方法.  相似文献   

12.
为方便实现对桥梁缆索的检测和日常维护任务,利用蛇形机器人良好的适应性,通过研究其控制规律,给出了一种简单的并可实现蛇形机器人沿缆索进行螺旋攀爬运动的控制函数.分析了螺旋攀爬运动中控制参数与螺旋参数之间的关系,利用粒子群优化算法对控制参数与螺旋半径、螺旋上升角、螺距之间的关系进行优化拟合,给出了拟合函数.通过Webots...  相似文献   

13.
仿人机器人是机器人研究领域的热点,可以应用于工业、医疗和家庭服务等领域。机器人仿真技术可以帮助研究者更好地研究机器人的结构和运动控制。本文基于Webots软件,构建HOAP2机器人的运动仿真平台,详细说明了机器人仿真环境的构建过程以及运动控制的仿真过程。仿真结果说明,本研究构建的仿真平台是有效的。  相似文献   

14.
In this paper, dynamical systems made up of locally coupled nonlinear units are used to control the locomotion of bio-inspired robots and, in particular, a simulation of an insect-like hexapod robot. These controllers are inspired by the biological paradigm of central pattern generators and are responsible for generating a locomotion gait. A general structure, which is able to change the locomotion gait according to environmental conditions, is introduced. This structure is based on an adaptive system, implemented by motor maps, and is able to learn the correct locomotion gait on the basis of a reward function. The proposed control system is validated by a large number of simulations carried out in a dynamic environment for simulating legged robots.  相似文献   

15.
Because of hydrodynamic model error of the present dynamic model, there is a challenge in controller design for the underwater snake-like robot. To tackle this challenge, this paper proposes an adaptive control schemes based on dynamic model for a planar, underwater snake-like robot with model error and time-varying noise. The adaptive control schemes aim to achieve the adaptive control of joint angles tracking and the direction of locomotion control. First, through approximation and reducibility using Taylor expansion method, a simplified dynamics model of a planar amphibious snake-like robot is derived. Then, the L1 adaptive controller based on piecewise constant adaptive law is applied on the simplified planar, underwater snake-like robot, which can deal with both matched and unmatched nonlinear uncertainties. Finally, to control the direction of locomotion, an auxiliary bias signal is used as the control input to regulate the locomotion direction. Simulation results show that this L1 adaptive controller is valid to deal with different uncertainties and achieve the joint angles tracking and fast adaptive at the same time. The modified L1 adaptive controller, in which the auxiliary bias item is added, has the ability to change the direction of locomotion, that is, the orientation angle is periodic with arbitrarily given constant on average.  相似文献   

16.
与轮行机器人相比,双足机器人具有更灵活的机械结构,具有跨越静态或动态障碍物的能力,使其可以在更复杂的环境中工作;以往的双足机器人路径规划控制策略只能解决静止或以可预测速度运动的障碍物的越障问题,提出了一种基于模糊Q学习算法的路径规划策略,在Adams软件中建立机器人的三维虚拟样机模型,在Matlab软件中设计控制器,进行联合仿真;仿真结果表明所设计的控制策略可以有效地克服机器人在线学习时间长的问题,并且可以成功跨越速度不可预测的运动障碍物,有很好的鲁棒性。  相似文献   

17.
Dynamic Analysis Tool for Legged Robots   总被引:1,自引:0,他引:1  
The paper introduces a systematic approach for dealing with legged robot mechanism analysis. First, we briefly summarize basic mathematical tools for studying the dynamics of these multi-loop and parallel mechanisms using a unified spatial formulation which is useful for computer algorithms. The dynamic behavior analysis is based on two stages. The first one deals with establishing the equations of motion of the whole mechanism including legs tip impact effects and allowing us to solve the direct and inverse dynamic problems. The second concerns the feet–ground interaction aspect which is one of the major problem in the context of dynamic simulation for walking devices. We focus on the phenomenon of contact by introducing a general model for dynamic simulation of contacts between a walking robot and ground. This model considers a force distribution and uses an analytical form for each force depending only on the known state of the robot system. Finally, some simulation results of biped robot are given. The simulation includes all phenomena that may occur during the locomotion cycle: impact, transition from impact to contact, contact during support with static friction, transition from static to sliding friction and sliding friction.  相似文献   

18.
《Advanced Robotics》2013,27(4):515-535
In this paper we explore the underlying principles of natural locomotion path generation of human beings. The knowledge of these principles is useful to implement biologically inspired path planning algorithms on a humanoid robot. By 'locomotion path' we denote the motion of the robot as a whole in the plane. The key to our approach is to formulate the path planning problem as an optimal control problem. We propose a single dynamic model valid for all situations, which includes both non-holonomic and holonomic modes of locomotion, as well as an appropriately designed unified objective function. The choice between holonomic and non-holonomic behavior is not accomplished by a switching model, but it appears in a smooth way, along with the optimal path, as a result of the optimization by efficient numerical techniques. The proposed model and objective function are successfully tested in six different locomotion scenarios. The resulting paths are implemented on the HRP-2 robot in the simulation environment OpenHRP as well as in the experiment on the real robot.  相似文献   

19.
This paper presents a novel control mechanism for generating adaptive locomotion of a caterpillar-like robot in complex terrain. Inspired by biological findings in studies of the locomotion of the lamprey, we employ sensory feedback integration for online modulation of the control parameters of a new proposed central pattern generator (CPG). This closed-loop control scheme consists of the following stages: First, touch sensor information is processed and transformed into module states. Then, reactive strategies that determine the mapping between module states and sensory inputs are generated according to an analysis of the module states. Finally, by means of a genetic algorithm, adaptive locomotion is achieved by optimising the amount and speed of sensory input that is fed back to the CPG model. Incorporating the closed-loop controller in a caterpillar-like robot, both simulation and real on-site experiments are carried out. The results confirm the effectiveness of the control system, based on which the robot flexibly adapts to, and manages to crawl across the complex terrain.  相似文献   

20.
In this paper, we propose an obstacle avoidance method for autonomous locomotion control of a snake robot. The snake robot consists of rigid links, active joints and passive wheels, and can move only by varying its shape. The pass planning for the obstacle avoidance is a complicated problem because the snake robot has many states, control inputs and the under-actuated property. In our proposed method, the snake motion is restricted to a periodic undulate curve (called a serpenoid curve) by an additional control constraint and the undulate curve is tuned by switching the control constraint in order that the snake robot avoids the obstacle. Therefore, the path planning is simplified and the snake robot will achieve the obstacle avoidance with an efficient path. In this paper, we denote the details of our method and investigate the effectiveness of our strategy by numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号