首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different aluminium trifluorides (-AlF3 and γ-AlF3) of high-area have been prepared, characterised by XRPD, N2 physisorption, IR, X-ray fluorescence, TPD and SEM techniques, and tested for the Cl/F exchange reaction of CCl2F2 (CFC-12) and CHClF2 (HCFC-22) in the gas phase.

Catalyst -AlF3 is more active than catalyst γ-AlF3 for both reactions. This is due to both its higher amount of Lewis acid sites, as deduced from ammonia-TPD and pyridine FT-IR studies, and its higher TOF values, which favours the Cl/F exchange in CFC and HCFC compounds. The main products obtained are those which result from the exchange of one chlorine by one fluorine, CClF3 and CHF3 for the exchange reaction of CCl2F2 and CHClF2, respectively.  相似文献   


2.
Yb-123 superconducting layer was coated on (Gd0.92Er0.08)2O3-buffered Ni substrate with a 100% lattice match. Ni was annealed to get a biaxially textured substrate. Both buffer layer and superconducting layer were coated with a non-vacuum sol–gel method. Coated film was characterized by means of XRD, ESEM. Tc and Ic of films are measured by the direct current 4-probe method. Critical transition temperature and critical current density of the superconductor were measured as 81 K and 1×104 A/cm2, respectively.  相似文献   

3.
杨军 《工业催化》2016,24(2):46-50
以氧化铝为载体,Ni和Mo为金属活性组分,添加不同含量乙二胺四乙酸,采用等体积浸渍法制备系列Ni Mo(x)/Al_2O_3(x为乙二胺四乙酸与Ni物质的量比)重质油加氢处理催化剂,考察乙二胺四乙酸加入量对催化剂加氢脱氮性能的影响,并采用N_2物理吸附-脱附、XRD和HRTEM等对催化剂进行表征。结果表明,乙二胺四乙酸的加入增强了金属组分与氧化铝载体间的相互作用,降低了MoS_2活性相的堆垛层数和片层长度,促进了活性相的分散。乙二胺四乙酸与Ni物质的量比为0.5时,MoS_2活性相堆垛层数和片层长度达到良好的结合,对应的催化剂Ni Mo(0.5)/Al_2O_3具有最优的加氢脱氮性能。  相似文献   

4.
Cu-ZSM-5 and Cu-AlTS-1 catalysts were prepared by solid state ion exchange and studied in DeNOx reactions. A NO3 type surface complex was found to be an active intermediate in the decomposition of NO and N2O. Copper was oxidized to Cu2+ in the decomposition reactions. Oscillations at full N2O conversion were observed in the gas phase O2 concentration, without any change in the N2 concentration. The oscillation was synchronized by gas phase NO formed from the NO3 complex. The same complex seems to be an active intermediate also in NO selective catalytic reduction (SCR) by methane, whereas carbonaceous deposits play a role in NO SCR by propane. TPD reveals that only 10–20% of the total copper in the zeolites participates in the catalytic cycles.  相似文献   

5.
A series of nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N2 adsorption/desorption, XRD, H2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni0 particles with the average size lower than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63%. Compared with the Ni/Al2O3 catalysts, the Ni/La–Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni–Al mixed oxide phase was detailed.  相似文献   

6.
为了提高固体氧化物燃料电池在中温条件下的电性能,探索了一种双金属阳极的阴极支撑单电池。单电池以La0.6Sr0.4CoO3(LSC)-Ce0.9Gd0.1O1.95(GDC)为阴极支撑体,旋涂了甘氨酸-硝酸盐法制备的La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)电解质及Sm0.2Ce0.8O1.9(SDC)缓冲层,涂覆了由硬模板法和浸渍法结合制备的Ni-Fe/GDC双金属阳极。对制备材料进行了XRD和微观形貌分析,单电池电化学测试在800 ℃和750 ℃下,以氢气为燃料的最大功率密度达0.73 W/cm2和0.64 W/cm2,以甲烷为燃料时达0.41 W/cm2和0.40 W/cm2。测试后的SEM表明,阳极具有多孔的微观结构,金属颗粒均匀包覆蠕虫状GDC,保证了单电池具有较高的发电性能。  相似文献   

7.
草甘膦是种广谱除草剂,草甘膦废水产量大、可生化性差。以钙钛矿型La0.8Ce0.2Fe0.9Ru0.1O3/TiO2为催化剂,采用湿式氧化(WAO)和催化湿式氧化(CWAO)法对草甘膦废水进行高效降解,并对草甘膦降解机制进行研究。应用XRD和XRF对催化剂进行表征,结果表明,合成的催化剂具有钙钛矿结构,但由于Ru原子半径太大可能没有完全进入钙钛矿骨架,导致CWAO反应后有微量Ru溶出。考察反应温度对草甘膦降解的影响,并对反应过程中C、N、P产物的选择性进行分析,结果表明,提高反应温度和加入催化剂有利于提高草甘膦转化率及对CO2和P3-4的选择性,但反应温度过高不利于生成N2,因为高温下NH3-N更容易被氧化成N-2和N-3。在实验条件下,合适的反应温度为200 ℃,反应180 min草甘膦转化率大于95%,同时对CO2和N2有较高的选择性,分别为54.59%和19.40%。应用计算量子化学计算草甘膦分子的净电荷分布,结果表明,WAO和CWAO中草甘膦反应的断键部位为C—C键、C—P键和C—N键,而后中间产物再进一步被氧化为CO2、N2、 N-2、N-3、P3-4等。  相似文献   

8.
A uniform BaTiO3 nano layer was coated on spherical Ni particles for multilayer ceramic capacitor applications via a Ti-hydroxide coating using the controlled hydrolysis of a TiCl4 butanol solution containing (C2H5)2NH (diethylamine, DEA) and its subsequent hydrothermal reaction at various [Ba(OH)2], residual [DEA], and hydrothermal temperatures. The hydrothermal conversion was successful at [Ba(OH)2]≥0.065 M (Ba/Ti≥1.3) and T ≥150°C, and the residual DEA in the Ti-hydroxide coating layer not only affected the formation of the BaTiO3 phase but also resulted in a rough surface morphology. When a minimal amount of DEA was involved in the formation of Ti-hydroxide, a uniform BaTiO3 coating with a clean surface morphology could be attained, which was confirmed by elemental mapping of the coated powder and the observation of hollow spheres after removing the Ni core. The BaTiO3 coating was very effective not only in preventing Ni oxidation but also in shifting the starting point of Ni densification to a higher temperature.  相似文献   

9.
We have examined the adsorption of CO and NO on powder Pd/Al2O3, Pd–Ce/Al2O3 and CeO2/Al2O3 catalysts, using temperature-programmed desorption (TPD). For CO adsorption on oxidized and pre-reduced Pd–Ce/Al2O3 TPD profiles are identical to those observed for Pd/Al2O3, suggesting that interactions between ceria and Pd have a negligible effect on the adsorption properties of CO. It does, however, affect the oxidation state of the palladium particles. For NO, there are differences between Pd/Al2O3 and Pd–Ce/Al2O3. On oxidized catalysts, Pd/Al2O3 is more efficient for NO dissociation. However, pre-reduction increases the amount of NO that can adsorb on Pd–Ce/Al2O3 and react to N2O and N2. In comparison with Pd/Al2O3, reduced Pd–Ce/Al2O3catalysts dissociate NO at relatively high temperatures but they are more reactive and favor N2 over N2O.  相似文献   

10.
Both NO decomposition and NO reduction by CH4 over 4%Sr/La2O3 in the absence and presence of O2 were examined between 773 and 973 K, and N2O decomposition was also studied. The presence of CH4 greatly increased the conversion of NO to N2 and this activity was further enhanced by co-fed O2. For example, at 773 K and 15 Torr NO the specific activities of NO decomposition, reduction by CH4 in the absence of O2, and reduction with 1% O2 in the feed were 8.3·10−4, 4.6·10−3, and 1.3·10−2 μmol N2/s m2, respectively. This oxygen-enhanced activity for NO reduction is attributed to the formation of methyl (and/or methylene) species on the oxide surface. NO decomposition on this catalyst occurred with an activation energy of 28 kcal/mol and the reaction order at 923 K with respect to NO was 1.1. The rate of N2 formation by decomposition was inhibited by O2 in the feed even though the reaction order in NO remained the same. The rate of NO reduction by CH4 continuously increased with temperature to 973 K with no bend-over in either the absence or the presence of O2 with equal activation energies of 26 kcal/mol. The addition of O2 increased the reaction order in CH4 at 923 K from 0.19 to 0.87, while it decreased the reaction order in NO from 0.73 to 0.55. The reaction order in O2 was 0.26 up to 0.5% O2 during which time the CH4 concentration was not decreased significantly. N2O decomposition occurs rapidly on this catalyst with a specific activity of 1.6·10−4 μmol N2/s m2 at 623 K and 1220 ppm N2O and an activation energy of 24 kcal/mol. The addition of CH4 inhibits this decomposition reaction. Finally, the use of either CO or H2 as the reductant (no O2) produced specific activities at 773 K that were almost 5 times greater than that with CH4 and gave activation energies of 21–26 kcal/mol, thus demonstrating the potential of using CO/H2 to reduce NO to N2 over these REO catalysts.  相似文献   

11.
Reforming of methane with carbon dioxide into syngas over Ni/γ-Al2O3 catalysts modified by potassium, MnO and CeO2 was studied. The catalysts were prepared by impregnation technique and were characterized by N2 adsorption/desorption isotherm, BET surface area, pore volume, and BJH pore size distribution measurements, and by X-ray diffraction and scanning electron microscopy. The performance of these catalysts was evaluated by conducting the reforming reaction in a fixed bed reactor. The coke content of the catalysts was determined by oxidation conducted in a thermo-gravimetric analyzer. Incorporation of potassium and CeO2 (or MnO) onto the catalyst significantly reduced the coke formation without significantly affecting the methane conversion and hydrogen yield. The stability and the lower amount of coking on promoted catalysts were attributed to partial coverage of the surface of nickel by patches of promoters and to their increased CO2 adsorption, forming a surface reactive carbonate species. Addition of CeO2 or MnO reduced the particle size of nickel, thus increasing Ni dispersion. For Ni–K/CeO2–Al2O3 catalysts, the improved stability was further attributed to the oxidative properties of CeO2. Results of the investigation suggest that stable Ni/Al2O3 catalysts for the carbon dioxide reforming of methane can be prepared by addition of both potassium and CeO2 (or MnO) as promoters.  相似文献   

12.
Conversion of CCl2F2 in the presence (hydrogenolysis) and absence of hydrogen was investigated on Al2O3, AlF3 and Pd/Al2O3 xerogel and aerogel catalysts. CCl2F2 was found to form CClF3 and CCl3F on Al2O3 and AlF3 in the presence and absence of hydrogen as well as on the Pd/Al2O3 catalysts in the absence of hydrogen. Overall activity increased during the hydrogenolysis reactions at 230°C as a function of time which was paralleled by a significant increase in the yield of CClF3 formed through a Cl/F-exchange reaction. X-ray diffraction patterns of the spent catalyst recovered after 3 h of hydrogenolysis confirmed the presence of Pd(C) (Pd–carbon solid solution) and AlF3 phases on Pd/Al2O3 catalysts indicated that the carbon incorporation into the Pd lattice and the transformation of Al2O3 to AlF3 starts at the initial stage of the reaction. It was concluded that AlF3 is responsible for the Cl/F-exchange reactions. CH4, a complete hydrogenation product, is formed during hydrogenolysis. Another route for its formation is the reaction between hydrogen in the gas phase and the interstitial carbon.  相似文献   

13.
The interactions NO—CO and O2—NO—CO have been studied onCuCo2O4γ-Al2O3 and on γ-Al2O3- and CuCo2O4γ-Al2O3-supported Pt, Rh and Pt—Rh catalysts. The deposition of noble metals (Pt, Rh and Pt—Rh) on CuCo2O4γ-Al2O3 instead of γ-Al2O3 is beneficial in: lowering the temperature at which maximum N2O is formed and decreasing the maximum N2O concentration attained; lowering the onset temperature of NO to N2 reduction, and increasing the N2 selectivity; preserving the activity towards NO to N2 reduction on a higher level following the concentration step NO + COO2+ NO + CO and changing the conditions from stoichiometric to oxidizing (50% excess of oxidants). The reason for this behaviour of the CuCo2O4γ-Al2O3-based noble metal catalysts is the formation (reversible) of a reduced surface layer on the CuCo2O4 supported spinel under the conditions of a stoichiometric NO + CO mixture.  相似文献   

14.
Ethanol steam reforming was studied over Ni/Al2O3 catalysts. The effect of support (- and γ-Al2O3), metal loading and a comparison between conventional H2 reduction with an activation method employing a CH4/O2 mixture was investigated. The properties of catalysts were studied by N2 physisorption, X-ray diffraction (XRD) and temperature programmed reduction (TPR). After activity tests, the catalysts were analyzed by scanning electron microscopy (SEM) and thermogravimetric analysis (TG/DTA). Ni supported on γ-Al2O3 was more active for H2 production than the catalyst supported on -Al2O3. Metal loading did not affect the catalytic performance. The alternative activation method with CH4/O2 mixture affected differently the activity and stability of the Ni/γ-Al2O3 and the Ni/-Al2O3 catalyst. This activation method increased significantly the stability of Ni/-Al2O3 compared to H2 reduction. SEM and TG/DTA analysis indicate the formation of filamentous carbon during the CH4/O2 activation step, which is associated with the increasing catalyst activity and stability. The effect of temperature on the type of carbon formed was investigated; indicating that filamentous coke increased activity while encapsulating coke promoted deactivation. A discussion about carbon formation and the influence on the activity is presented.  相似文献   

15.
Activity for hydrolysis of CCl2F2 (CFC12) on various metal sulfate was investigated. Zr(SO4)2 was found to be the most active while FeSO4, Cr2(SO4)3, Al2(SO4)3, La2(SO4)3 and Ce2(SO4)3 had intermediate activity. MnSO4, CoSO4, and MgSO4 showed low activity and SrSO4, CaSO4, and BaSO4 had even less activity. The major carbon containing product was CO2 and small amount of CClF3 and CO were formed over several sulfates. The crystal structure of the sulfates was stable during decomposition of CCl2F2, and the conversion reached a steady state after initial decrease at 275 °C over Zr(SO4)2 catalyst. The concentration of surface hydroxyl was larger than that over AlPO4-based catalysts and a reaction mechanism similar to that over AlPO4-based catalysts was proposed.  相似文献   

16.
The adsorption of HCN on, its catalytic oxidation with 6% O2 over 0.5% Pt/Al2O3, and the subsequent oxidation of strongly bound chemisorbed species upon heating were investigated. The observed N-containing products were N2O, NO and NO2, and some residual adsorbed N-containing species were oxidized to NO and NO2 during subsequent temperature programmed oxidation. Because N-atom balance could not be obtained after accounting for the quantities of each of these product species, we propose that N2 and was formed. Both the HCN conversion and the selectivity towards different N-containing products depend strongly on the reaction temperature and the composition of the reactant gas mixture. In particular, total HCN conversion reaches 95% above 250 °C. Furthermore, the temperature of maximum HCN conversion to N2O is located between 200 and 250 °C, while raising the reaction temperature increases the proportion of NOx in the products. The co-feeding of H2O and C3H6 had little, if any effect on the total HCN conversion, but C3H6 addition did increase the conversion to NO and decrease the conversion to NO2, perhaps due to the competing presence of adsorbed fragments of reductive C3H6. Evidence is also presented that introduction of NO and NO2 into the reactant gas mixture resulted in additional reaction pathways between these NOx species and HCN that provide for lean-NOx reduction coincident with HCN oxidation.  相似文献   

17.
The hydrodehalogenation of halon 1211 over Ni, Pd and Pt supported on γ-alumina was studied. The effect of reaction temperature and hydrogen/halon 1211 input ratio was examined. Steady state catalytic activities of Pd and Pt are very similar, and much higher than that of Ni. Hydrodehalogenation over Pd favours the formation of CH2F2, while Pt and Ni produce primarily CH4 and CH3F, respectively. Product profiles suggest that the hydrodehalogenation of halon 1211 over Pd and Pt follows a reaction mechanism which is similar to hydrodehalogenation of CFC-12. Over Ni catalysts, the primary hydrodehalogenation reactions are those which first remove one halogen (Cl or Br) and then remove two halogens (one F and either Br or Cl). The higher mobility of hydrogen atom on the surface of Pt is consistent with the observation that only trace amounts of C2+ hydrocarbons were detected when Pt was used compared with Pd and Ni. Increasing selectivity to CH2F2 with time on stream over Pd and Pt is mainly ascribed to the transformation of support alumina to partially fluorinated alumina.  相似文献   

18.
Polyacetylene can be electrochemically oxidized in LiClFeCl3 nitromethane and LiClAlCl3 nitromethane solutions to give a highly conducting (500 ohm−1 cm−1) polymer exhibiting p-type conductivity. The limiting composition obtainable in the electrolysis can be expressed by the following formula: [CH(MCl4)0.05]x where M = FeAl.  相似文献   

19.
In this study, we examine the interaction of N2O with TiO2(1 1 0) in an effort to better understand the conversion of NOx species to N2 over TiO2-based catalysts. The TiO2(1 1 0) surface was chosen as a model system because this material is commonly used as a support and because oxygen vacancies on this surface are perhaps the best available models for the role of electronic defects in catalysis. Annealing TiO2(1 1 0) in vacuum at high temperature (above about 800 K) generates oxygen vacancy sites that are associated with reduced surface cations (Ti3+ sites) and that are easily quantified using temperature programmed desorption (TPD) of water. Using TPD, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), we found that the majority of N2O molecules adsorbed at 90 K on TiO2(1 1 0) are weakly held and desorb from the surface at 130 K. However, a small fraction of the N2O molecules exposed to TiO2(1 1 0) at 90 K decompose to N2 via one of two channels, both of which are vacancy-mediated. One channel occurs at 90 K, and results in N2 ejection from the surface and vacancy oxidation. We propose that this channel involves N2O molecules bound at vacancies with the O-end of the molecule in the vacancy. The second channel results from an adsorbed state of N2O that decomposes at 170 K to liberate N2 in the gas phase and deposit oxygen adatoms at non-defect Ti4+ sites. The presence of these O adatoms is clearly evident in subsequent water TPD measurements. We propose that this channel involves N2O molecules that are bound at vacancies with the N-end of the molecule in the vacancy, which permits the O-end of the molecule to interact with an adjacent Ti4+ site. The partitioning between these two channels is roughly 1:1 for adsorption at 90 K, but neither is observed to occur for moderate N2O exposures at temperatures above 200 K. EELS data indicate that vacancies readily transfer charge to N2O at 90 K, and this charge transfer facilitates N2O decomposition. Based on these results, it appears that the decomposition of N2O to N2 requires trapping of the molecule at vacancies and that the lifetime of the N2O–vacancy interaction may be key to the conversion of N2O to N2.  相似文献   

20.
A series of CeO2 promoted cobalt spinel catalysts were prepared by the co-precipitation method and tested for the decomposition of nitrous oxide (N2O). Addition of CeO2 to Co3O4 led to an improvement in the catalytic activity for N2O decomposition. The catalyst was most active when the molar ratio of Ce/Co was around 0.05. Complete N2O conversion could be attained over the CoCe0.05 catalyst below 400 °C even in the presence of O2, H2O or NO. Methods of XRD, FE-SEM, BET, XPS, H2-TPR and O2-TPD were used to characterize these catalysts. The analytical results indicated that the addition of CeO2 could increase the surface area of Co3O4, and then improve the reduction of Co3+ to Co2+ by facilitating the desorption of adsorbed oxygen species, which is the rate-determining step of the N2O decomposition over cobalt spinel catalyst. We conclude that these effects, caused by the addition of CeO2, are responsible for the enhancement of catalytic activity of Co3O4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号