首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodissociation of fully reduced, carbonmonoxy cytochrome bo3 causes ultrafast transfer of carbon monoxide (C triple bond O) from heme iron to CuB in the binuclear site. At low temperatures, the C triple bond O remains bound to CuB for extended times. Here, we show that the binding of C triple bond O to CuB perturbs the IR stretch of an un-ionized carboxylic acid residue, which is identified as Glu286 by mutation to Asp or to Cys. Before photodissociation, the carbonyl (C=O)-stretching frequency of this carboxylic acid residue is 1726 cm-1 for Glu286 and 1759 cm-1 for Glu286Asp. These frequencies are definitive evidence for un-ionized R-COOH and suggest that the carboxylic acids are hydrogen-bonded, though more extensively in Glu286. In Glu286Cys, this IR feature is lost altogether. We ascribe the frequency shifts in the C=O IR absorptions to the effects of binding photodissociated C triple bond O to CuB, which are relay ed to the 286 locus. Conversely, the 2065 cm-1 C triple bond O stretch of CuB-CO is markedly affected by both mutations. These effects are ascribed to changes in the Lewis acidity of CuB, or to displacement of a CuB histidine ligand by C triple bond O. C triple bond O binding to CuB also induces a downshift of an IR band which can be attributed to an aromatic C-H stretch, possibly of histidine imidazole, at about 3140 cm-1. The results suggest an easily polarizable, through-bond connectivity between one of the histidine CuB ligands and the carboxylic group of Glu286. A chain of bound water molecules may provide such a connection, which is of interest in the context of the proton pump mechanism of the heme-copper oxidases.  相似文献   

2.
The final step of the catalytic cycle of cytochrome oxidase, the reduction of oxyferryl heme a3 in compound F, was investigated using a binuclear polypyridine ruthenium complex (Ru2C) as a photoactive reducing agent. The net charge of +4 on Ru2C allows it to bind electrostatically near CuA in subunit II of cytochrome oxidase. Photoexcitation of Ru2C with a laser flash results in formation of a metal-to-ligand charge-transfer excited state, Ru2C, which rapidly transfers an electron to CuA of cytochrome oxidase from either beef heart or Rhodobacter sphaeroides. This is followed by reversible electron transfer from CuA to heme a with forward and reverse rate constants of k1 = 9.3 x 10(4) s-1 and k-1 = 1.7 x 10(4) s-1 for R. sphaeroides cytochrome oxidase in the resting state. Compound F was prepared by treating the resting enzyme with excess hydrogen peroxide. The value of the rate constant k1 is the same in compound F where heme a3 is in the oxyferryl form as in the resting enzyme where heme a3 is ferric. Reduction of heme a in compound F is followed by electron transfer from heme a to oxyferryl heme a3 with a rate constant of 700 s-1, as indicated by transients at 605 and 580 nm. No delay between heme a reoxidation and oxyferryl heme a3 reduction is observed, showing that no electron-transfer intermediates, such as reduced CuB, accumulate in this process. The rate constant for electron transfer from heme a to oxyferryl heme a3 was measured in beef cytochrome oxidase from pH 7.0 to pH 9.5, and found to decrease upon titration of a group with a pKa of 9.0. The rate constant is slower in D2O than in H2O by a factor of 4.3, indicating that the electron-transfer reaction is rate-limited by a proton-transfer step. The pH dependence and deuterium isotope effect for reduction of isolated compound F are comparable to that observed during reaction of the reduced, CO-inhibited CcO with oxygen by the flow-flash technique. This result indicates that electron transfer from heme a to oxyferryl heme a3 is not controlled by conformational effects imposed by the initial redox state of the enzyme. The rate constant for electron transfer from heme a to oxyferryl heme a3 is the same in the R. sphaeroides K362M CcO mutant as in wild-type CcO, indicating that the K-channel is not involved in proton uptake during reduction of compound F.  相似文献   

3.
The kinetics of reduction of cytochrome b and cytochrome c1 of yeast Complex III by 5-deazariboflavin semiquinone, generated by laser flash photolysis under anaerobic conditions, have been investigated. The reduction of cytochrome b occurs in two phases with first-order rate constants of 1300 and 670 s-1, whereas the reduction of cytochrome c1 appears as a unique exponential phase with an intermediate value of 800 s-1. Under these experimental conditions, about 50% of cytochrome b is reduced in comparison with cytochrome c1. After photoreduction, the re-oxidation of the cytochromes by internal re-equilibrium occurs in both cases, following pseudo-first-order kinetics at a rate constant of 43 s-1 for cytochrome b and 39 s-1 for cytochrome c1. These results, which agree with the data from the rapid mixing technique (A.-L. Tsai, J.S. Olson, G. Palmer, J. Biol. Chem. 262 (1987) 8677-8684), have implications for the mechanistic understanding of inner Complex III electron transfer. One of the goals of the investigation reported here is to provide direct evidence for the hypothesis of a proton-motive Q cycle for the mechanism of electron transfer in Complex III. Moreover, these results demonstrate the usefulness of laser flash photolysis in studying the redox kinetic properties of mitochondrial Complex III.  相似文献   

4.
Mutation of tyrosine-288 to a phenylalanine in cytochrome c oxidase from Rhodobacter sphaeroides drastically alters its properties. Tyr-288 lies in the CuB-cytochrome a3 binuclear catalytic site and forms a hydrogen bond with the hydroxy group on the farnesyl side chain of the heme. In addition, through a post-translational modification, Y288 is covalently linked to one of the histidine ligands that is coordinated to CuB. In the Y288F mutant enzyme, the "as-isolated" preparation is a mixture of reduced cytochrome a and oxidized cytochrome a3. The cytochrome a3 heme, which is largely six-coordinate low-spin in both oxidation states of the mutant, cannot be reduced by cytochrome c, but only by dithionite, possibly due to a large decrease in its reduction potential. It is postulated that the Y288F mutation prevents the post-translational modification from occurring. As a consequence, the catalytic site becomes disrupted. Thus, one role of the post-translational modification is to stabilize the functional catalytic site by maintaining the correct ligands on CuB, thereby preventing nonfunctional ligands from coordinating to the heme.  相似文献   

5.
The reaction of the quinol oxidase cytochrome bo3 from Escherichia coli with ubiquinol-2 (UQ2H2) was carried out using substoichiometric (0.5 equiv) amounts of substrate. Reactions were monitored through the use of freeze-quench EPR spectroscopy. Under 1 atm of argon, semiquinone was formed at the QB site of the enzyme with a formation rate constant of 140 s-1; the QB semiquinone EPR signal decayed with a rate constant of about 5 s-1. Heme b and CuB were reduced within the 10-ms dead time of the freeze-quench experiment and remained at a constant level of reduction over the 1-s time course of the experiment. Quantitation of the reduction levels of QB and heme b during this reaction yielded a reduction potential of 30-60 mV for heme b. Under a dioxygen atmosphere, the rates of semiquinone formation and its subsequent decay were not altered significantly. However, accurate quantitation of the EPR signals for heme b and heme o3 could not be made, due to interference from dioxygen. In the reaction between the QB-depleted enzyme and UQ2H2 under substoichiometric conditions, there was no observable change in the EPR spectra of the enzyme over the time course of the reaction, suggesting an electron transfer from heme b to the binuclear site in the absence of QB which occurs within the dead time of the freeze-quench apparatus. Analysis of the thermodynamics and kinetics of electron transfers in this enzyme suggests that a Q-cycle mechanism for proton translocation is more likely than a cytochrome c oxidase-type ion-pump mechanism.  相似文献   

6.
In cytochrome c oxidase, a requirement for proton pumping is a tight coupling between electron and proton transfer, which could be accomplished if internal electron-transfer rates were controlled by uptake of protons. During reaction of the fully reduced enzyme with oxygen, concomitant with the "peroxy" to "oxoferryl" transition, internal transfer of the fourth electron from CuA to heme a has the same rate as proton uptake from the bulk solution (8,000 s-1). The question was therefore raised whether the proton uptake controls electron transfer or vice versa. To resolve this question, we have studied a site-specific mutant of the Rhodobacter sphaeroides enzyme in which methionine 263 (SU II), a CuA ligand, was replaced by leucine, which resulted in an increased redox potential of CuA. During reaction of the reduced mutant enzyme with O2, a proton was taken up at the same rate as in the wild-type enzyme (8,000 s-1), whereas electron transfer from CuA to heme a was impaired. Together with results from studies of the EQ(I-286) mutant enzyme, in which both proton uptake and electron transfer from CuA to heme a were blocked, the results from this study show that the CuA --> heme a electron transfer is controlled by the proton uptake and not vice versa. This mechanism prevents further electron transfer to heme a3-CuB before a proton is taken up, which assures a tight coupling of electron transfer to proton pumping.  相似文献   

7.
The reaction of nitric oxide (NO) with fast cytochrome bo from Escherichia coli has been studied by electronic absorption, MCD, and EPR spectroscopy. Titration of the enzyme with NO showed the formation of two distinct species, consistent with NO binding stoichiometries of 1:1 and 2:1 with observed dissociation constants at pH 7.5 of approximately 2.3 x 10(-)6 and 3.3 x 10(-)5 M. Monitoring the titration by EPR spectroscopy revealed that the broad EPR signals at g approximately 7.3, 3.7, and 2.8 due to magnetic interaction between high-spin heme o (S = 5/2) and CuBII (S = 1/2) are lost. A high-spin heme o signal at g = 6.0 appears as the 1:1 complex is formed but is lost again on formation of the 2:1 complex, which is EPR silent. The absorption spectrum shows that heme o remains in the high-spin FeIII state throughout the titration. These results are consistent with the binding of up to two NO molecules at CuBII. This has been confirmed by studies with the Cl- adduct of fast cytochrome bo. MCD evidence shows that heme o remains ligated by histidine and water. Addition of excess NO to the Cl- adduct leads to the appearance of a high-spin FeIII heme EPR signal. Hence chloride ion binds to CuB, blocking the binding of a second NO molecule. These results suggest a mechanism for the reduction of NO to nitrous oxide by cytochrome bo and cytochrome c oxidase in which the binding of two cis NO molecules at CuB permits the formation of an N-N bond and the abstraction of oxygen by the heme group.  相似文献   

8.
The reactions of nitric oxide (NO) with fully oxidized cytochrome c oxidase (O) and the intermediates P and F have been investigated by optical spectroscopy, using both static and kinetic methods. The reaction of NO with O leads to a rapid (approximately 100 s-1) electron ejection from the binuclear center to cytochrome a and CuA. The reaction with the intermediates P and F leads to the depletion of these species in slower reactions, yielding the fully oxidized enzyme. The fastest optical change, however, takes place within the dead time of the stopped-flow apparatus (approximately 1 ms), and corresponds to the formation of the F intermediate (580 nm) upon reaction of NO with a species that we postulate is at the peroxide oxidation level. This species can be formulated as either Fe5+ = O CuB2+ or Fe4+ = O CuB3+, and it is spectrally distinct from the P intermediate (607 nm). All of these reactions have been rationalized through a mechanism in which NO reacts with CuB2+, generating the nitrosonium species CuB1+ NO+, which upon hydration yields nitrous acid and CuB1+. This is followed by redox equilibration of CuB with Fea/CuA or Fea3 (in which Fea and Fea3 are the iron centers of cytochromes a and a3, respectively). In agreement with this hypothesis, our results indicate that nitrite is rapidly formed within the binuclear center following the addition of NO to the three species tested (O, P, and F). This work suggests that nitrosylation at CuB2+ instead of at Fea32+ is a key event in the fast inhibition of cytochrome c oxidase by NO.  相似文献   

9.
The recently reported X-ray structures of cytochrome oxidase reveal structures that are likely proton-conducting channels. One of these channels, leading from the negative aqueous surface to the heme a3/CuB bimetallic center, contains a lysine as a central element. Previous work has shown that this lysine (K362 in the oxidase from Rhodobacter sphaeroides) is essential for cytochrome c oxidase activity. The data presented demonstrate that the K362M mutant is impeded in the reduction of the heme a3/CuB bimetallic center, probably by interfering with the intramolecular movement of protons. The reduction of the heme-copper center is required prior to the reaction with dioxygen to form the so-called peroxy intermediate (compound P). This block can be by-passed to some extent by the addition of H2O2, which can react with the enzyme without prereduction of the heme-copper center and can then be reduced to water using electrons from cytochrome c. Hence, the K362M mutant, though lacking oxidase activity, exhibits cytochrome c peroxidase activity. Rapid mixing techniques have been used to determine the kinetics of this peroxidase activity at concentrations of H2O2 up to 0.5 M. The Km for peroxide is about 50 mM and the Vmax is 50 electrons s-1, which is considerably slower than the turnover that can be obtained for the oxidase activity of the wild-type enzyme (1200 s-1). The turnover of the mutant oxidase with H2O2 appears to be limited by the rate of reaction of the enzyme with peroxide to form compound P, rather than the rate of reduction of compound P to water by cytochrome c. The data require a reexamination of the proposed roles of the putative proton-conducting channels.  相似文献   

10.
The C-terminal periplasmic domain of subunit II of the Escherichia coli bo-type ubiquinol oxidase was replaced with the counterpart of the thermophilic Bacillus caa3-type cytochrome c oxidase containing the CuA-cytochrome c domain by means of gene engineering techniques. The chimeric terminal oxidase was expressed by a pBR322 derivative in a terminal oxidase deficient mutant of E. coli, although the amount of the chimeric enzyme was smaller than that of the Escherichia coli bo-type ubiquinol oxidase expressed by the original cytochrome bo-expressing plasmid. The chimeric enzyme showed much higher TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity than the wild-type cytochrome bo, but lower activity than the thermophilic Bacillus caa3-type cytochrome c oxidase. The chimeric subunit II was confirmed to bind to heme C. These results suggest that the CuA-cytochrome c domain grafted to this membrane anchor can facilitate electron transfer from reduced TMPD to low-spin protoheme b in subunit I.  相似文献   

11.
The cyanide-ligated form of the baker's yeast cytochrome c peroxidase mutant bearing the mutation Asn82-->Ala82 ([N82A]CcPCN) has been studied by proton NMR spectroscopy. This mutation alters an amino acid that forms a hydrogen bond to His52, the distal histidine residue that interacts in the heme pocket with heme-bound ligands. His52 is a residue critical to cytochrome c peroxidase's normal function. Proton hyperfine resonance assignments have been made for the cyanide-ligated form of the mutant by comparison with 1-D and NOESY spectra of the wild-type native enzyme. For [N82A]CcPCN, proton NMR spectra reveal two significant phenomena. First, similar to results published for the related mutant [N82D]CcPCN [Satterlee, J. D., et al. (1994) Eur. J. Biochem. 244, 81-87], for Ala82 mutation disrupts the hydrogen bond between His52 and the heme-ligated CN. Second, four of the 24 resolved hyperfine-shifted resonances are doubled in the mutant enzyme's proton spectrum, leading to the concept that the heme active site environment is dynamically microheterogeneous on a very localized scale. Two magnetically inequivalent enzyme forms are detected in a pure enzyme preparation. Varying temperature causes the two enzyme forms to interconvert. Magnetization transfer experiments further document this interconversion between enzyme forms and have been used to determine that the rate of interconversion is 250 (+/- 53) s-1. The equilibrium constant at 20 degrees C is 1.5. Equilibrium constants have been calculated at various temperatures between 5 and 29 degrees C leading to the following values: delta H = 60 kJ mol-1; delta S = 0.20 kJ K-1 mol-1.  相似文献   

12.
The reduction of dioxygen to water by cytochrome c oxidase was monitored in the Soret region following photolysis of the fully reduced CO complex. Time-resolved optical absorption difference spectra collected between 373 and 521 nm were measured at delay times from 50 ns to 50 ms and analyzed using singular value decomposition and multiexponential fitting. Five processes were resolved with apparent lifetimes of 0.9 micros, 8 micros, 36 micros, 103 micros, and 1.2 ms. A mechanism is proposed and spectra of intermediates are extracted and compared to model spectra of the postulated intermediates. The model builds on an earlier mechanism that used data only from the visible region (Sucheta et al. (1997) Biochemistry 36, 554-565) and provides a more complete mechanism that fits results from both spectral regions. Intermediate 3, the ferrous-oxy complex (compound A) decays into a 607 nm species, generally referred to as P, which is converted to a 580 nm ferryl form (Fo) on a significantly faster time scale. The equilibrium constant between P and Fo is 1. We propose that the structure of P is a3(4+)=O CuB2+-OH- with an oxidizing equivalent residing on tyrosine 244, located close to the binuclear center. Upon conversion of P to Fo, cytochrome a donates an electron to the tyrosine radical, forming tyrosinate. Subsequently a proton is taken up by tyrosinate, forming F(I) [a3(4+)=O CuB2+-OH- a3+ CuA+]. This is followed by rapid electron transfer from CuA to cytochrome a to produce F(II) [a3(4+)=O CuB2+-OH- a2+ CuA2+].  相似文献   

13.
14.
Flavocytochrome b2, which has been fully reduced using L-lactate, can be rapidly oxidized by 1 equiv using the laser-generated triplet state of 5-deazariboflavin. Parallel photoinduced oxidation occurs at the reduced heme and at the fully reduced FMN (FMNH2) prosthetic groups of different enzyme monomers, producing the anion semiquinone of FMN and a ferric heme. Following the initial oxidation reaction, rapid intramolecular reduction of the ferric heme occurs with concomitant oxidation of FMNH2, generating the neutral FMN semiquinone. The observed rate constant for this intramolecular electron transfer is 2200 s-1, which is 1 order of magnitude larger than the turnover number under these conditions. A slower reduction of the heme prosthetic group also occurs with an observed rate constant of approximately 10 s-1, perhaps due to intersubunit electron transfer from reduced FMN to heme. The rapid intramolecular electron transfer between the FMNH2 and ferric heme is eliminated upon addition of excess pyruvate (Ki = 3.8 mM). This latter result indicates that pyruvate inhibition of catalytic turnover apparently can occur at the FMNH2-->heme electron transfer step. These results markedly differ from those previously obtained (Walker, M. C., & Tollin, G. (1991) Biochemistry 30, 5546-5555) and confirmed here for electron transfer within the one-electron reduced enzyme and for the effect of pyruvate binding, suggesting that intramolecular communication between the heme and flavin prosthetic groups can be controlled by the redox state of the enzyme and by ligand binding to the active site.  相似文献   

15.
We have investigated electrogenic events and absorbance changes following pulsed illumination of partly reduced cytochrome c oxidase in the absence of dioxygen and carbon monoxide (Hallén et al. (1993) FEBS Lett. 318, 134-138). In both types of experiment similar kinetics were observed; a rapid (tau < 0.5 micros) change was followed by relaxations with time constants of approx. 7 micros and 80 micros. Both the time constant and the activation energy of the 80 micros component were, within the experimental error, the same as those of one of the steps in the reduction of dioxygen by reduced cytochrome c oxidase. The absorbance changes showed a rapid haem reduction, followed by reoxidation. They were affected by CN(-) and N(-)3, ligands which bind in the binuclear centre of cytochrome c oxidase; the absorbance changes were quenched by CN(-) and in the presence of N(-)3, the amplitude of the 7 micros component increased whereas that of the 80 micros decreased. Based on these findings, a model is proposed which involves electron transfer from Cu(+)B to Fe(3+)A3, as a response to structural changes upon pulsed illumination. The same structural changes are also suggested to take place in the oxygen reduction. These changes may play an important role in the gating of electrons as well as protons, an obligatory feature of a redox-linked proton pump.  相似文献   

16.
The equilibrium between the two substrate-reduced forms of pea seedling amine oxidase, one containing Cu(II) and reduced 3-(2,4,5-trihydroxyphenyl)-L-alanine (topa) cofactor and one containing Cu(I) and topa semi-quinone, was investigated by visible spectroscopy as a function of temperature. To determine the rate of interconversion between the two species, temperature jump relaxation studies were performed on the substrate-reduced enzyme near room temperature. The yellow radical species was found to approach its equilibrium concentration with a maximum rate constant of 43,000 +/- 3,000 s-1. This rapid equilibration is attributed to intramolecular electron transfer between copper and topa. The data indicate that the Cu(I)/topaSQ species is a kinetically competent intermediate in the reaction of amine oxidases with substrates. Furthermore, the extremely rapid electron transfer rate (kET congruent to 20,000 s-1) suggests that the topa cofactor is in close proximity to the copper atom.  相似文献   

17.
Site-directed mutagenesis has been used to produce variants of a tryptic fragment of bovine liver cytochrome b5 in which Glu44 and Glu56 are mutated to alanine. The reduction potentials measured by spectroelectrochemical titration (in the presence of 1 mM (Ru(NH3)6)3+, pH 7.0 and I=0.1 M) are 4.5, 6.0, 6.0 and 7.5 mV versus the standard hydrogen electrode (SHE) for the wild-type and E44A, E56A and E44/56A mutants of cytochrome b5, respectively. A comparative two-dimensional NMR study of cytochrome b5 and its E44/56A mutant in water solution has been achieved. Resonance assignments of side-chains have been completed successfully. The NMR results suggest that the secondary structures and global folding of the E44/56A mutant remain unchanged, but the mutation of both Glu44 and Glu56 to hydrophobic alanine may lead to the two helices containing mutated residues contracting towards the heme center. The inner mobility of the Gly42 approximately Glu44 segment in cytochrome b5 may be responsible for the difference of the binding mode between Glu44 and Glu56 with cytochrome c. The binding between cytochrome c and cytochrome b5 was studied by optical difference spectra of cytochrome c and variants of cytochrome b5. The association constants (KA) for the wild-type, E44A, E56A, and E44/56A mutants of cytochrome b5 with cytochrome c, are 4.70(+/-0. 10)x10(6) M-1, 1.88(+/-0.03)x10(6) M-1, 2.70(+/-0.13)x10(6) M-1, and 1.14(+/-0.05)x10(6) M-1, respectively. This is indicative that both Glu44 and Glu56 are involved in the complex formation between cytochrome b5 and cytochrome c. The reduction of horse heart ferricytochrome c by recombinant ferrocytochrome b5 and its mutants has been studied. The rate constant of the electron transfer reaction between ferricytochrome c and wild-type ferrocytochrome b5 (1.074(+/-0.49)x10(7) M-1 s-1) is higher than those of the mutant protein E44A (8.98(+/-0.20)x10(6) M-1 s-1), E56A (8.76(+/-0. 39)x10(6) M-1 s-1), and E44/56A (8.02(+/-0.38)x10(6) M-1 s-1) at 15 degreesC, pH 7.0, I=0.35 M. The rate constants are strongly dependent on ionic strength and temperature. These studies, by means of a series of techniques, provide conclusive results that the interaction between cytochrome b5 and cytochrome c is electrostatically guided, and, more importantly, that both Glu44 and Glu56 participate in the electron transfer reaction.  相似文献   

18.
Purified mitochondrial cytochrome c oxidase catalyzes the conversion of peroxynitrite to nitric oxide (NO). This reaction is cyanide-sensitive, indicating that the binuclear heme a3/CuB center is the catalytic site. NO production causes a reversible inhibition of turnover, characterized by formation of the cytochrome a3 nitrosyl complex. In addition, peroxynitrite causes irreversible inhibition of cytochrome oxidase, characterized by a decreased Vmax and a raised Km for oxygen. Under these conditions, the redox state of cytochrome a is elevated, indicating inhibition of electron transfer and/or oxygen reduction reactions subsequent to this center. The lipid bilayer is no barrier to these peroxynitrite effects, as NO production and irreversible enzyme inhibition were also observed in cytochrome oxidase proteoliposomes. Addition of 50 microM peroxynitrite to 10 microM fully oxidized enzyme induced spectral changes characteristic of the formation of ferryl cytochrome a3, partial reduction of cytochrome a, and irreversible damage to the CuA site. Higher concentrations of peroxynitrite (250 microM) cause heme degradation. In the fully reduced enzyme, peroxynitrite causes a red shift in the optical spectrum of both cytochromes a and a3, resulting in a symmetrical peak in the visible region. Therefore, peroxynitrite can both modify and degrade the metal centers of cytochrome oxidase.  相似文献   

19.
The molecular processes concomitant with the redox reactions of wild-type and mutant cytochrome c oxidase from Paracoccus denitrificans were analyzed by a combination of protein electrochemistry and Fourier transform infrared (FTIR) difference spectroscopy. Oxidized-minus-reduced FTIR difference spectra in the mid-infrared (4000-1000 cm-1) reflecting full or stepwise oxidation and reduction of the respective cofactor(s) were obtained. In the 1800-1000 cm-1 range, these FTIR difference spectra reflect changes of the polypeptide backbone geometry in the amide I (ca. 1620-1680 cm-1) and amide II (ca. 1560-1540 cm-1) region in response to the redox transition of the cofactor(s). In addition, several modes in the 1600-1200 cm-1 range can be tentatively attributed to heme modes. A peak at 1746 cm-1 associated with the oxidized form and a peak at 1734 cm-1 associated with the reduced form were previously discussed by us as proton transfer between Asp or Glu side chain modes in the course of the redox reaction of the enzyme [Hellwig, P., Rost, B., Kaiser, U., Ostermeier, C., Michel, H., and M?ntele, W. (1996) FEBS Lett. 385, 53-57]. These signals were resolved into several components associated with the oxidation of different cofactors. For a stepwise potential titration from the fully reduced state (-0.5 V) to the fully oxidized state (+0.5 V), a small component at 1738 cm-1 develops in the potential range of approximately +0.15 V and disappears at more positive potentials while the main component at 1746 cm-1 appears in the range of approximately +0.20 V (all potentials quoted vs Ag/AgCl/3 M KCl). This observation clearly indicates two different ionizable residues involved in redox-induced proton transfer. The major component at 1746 cm-1 is completely lost in the FTIR difference spectra of the Glu 278 Gln mutant enzyme. In the spectrum of the subunit I Glu 278 Asp mutant enzyme, the major component of the discussed difference band is lost. In contrast, the complete difference signal of the wild-type enzyme is preserved in the Asp 124 Asn, Asp 124 Ser, and Asp 399 Asn variants, which are critical residues in the discussed proton pump channel as suggested from structure and mutagenesis experiments. On the basis of these difference spectra of mutants, we present further evidence that glutamic acid 278 in subunit I is a crucial residue for the redox reaction. Potential titrations performed simultaneously for the IR and for the UV/VIS indicate that the signal related to Glu 278 is coupled to the electron transfer to/from heme a; however, additional involvement of CuB electron transfer cannot be excluded.  相似文献   

20.
A ruthenium-labeled cytochrome c derivative was prepared to meet two design criteria: the ruthenium group must transfer an electron rapidly to the heme group, but not alter the interaction with cytochrome c oxidase. Site-directed mutagenesis was used to replace His39 on the backside of yeast C102T iso-1-cytochrome c with a cysteine residue, and the single sulfhydryl group was labeled with (4-bromomethyl-4' methylbipyridine) (bis-bipyridine)ruthenium(II) to form Ru-39-cytochrome c (cyt c). There is an efficient pathway for electron transfer from the ruthenium group to the heme group of Ru-39-cyt c comprising 13 covalent bonds and one hydrogen bond. Electron transfer from the excited state Ru(II*) to ferric heme c occurred with a rate constant of (6.0 +/- 2.0) x 10(5) s-1, followed by electron transfer from ferrous heme c to Ru(III) with a rate constant of (1.0 +/- 0.2) x 10(6) s-1. Laser excitation of a complex between Ru-39-cyt c and beef cytochrome c oxidase in low ionic strength buffer (5 mM phosphate, pH7) resulted in electron transfer from photoreduced heme c to CuA with a rate constant of (6 +/- 2) x 10(4) s-1, followed by electron transfer from CuA to heme a with a rate constant of (1.8 +/- 0.3) x 10(4) s-1. Increasing the ionic strength to 100 mM leads to bimolecular kinetics as the complex is dissociated. The second-order rate constant is (2.5 +/- 0.4) x 10(7) M-1s-1 at 230 mM ionic strength, nearly the same as that of wild-type iso-1-cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号