首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A clustering procedure called HICAP (HIstogram Cluster Analysis Procedure) was developed to perform an unsupervised classification of multidimensional image data. The clustering approach used in HICAP is based upon an algorithm described by Narendra and Goldberg to classify four-dimensional Landsat Multispectral Scanner data. HICAP incorporates two major modifications to the scheme by Narendra and Goldberg. The first modification is that HICAP is generalized to process up to 32-bit data with an arbitrary number of dimensions. The second modification is that HICAP uses more efficient algorithms to implement the clustering approach described by Narendra and Goldberg.(1) This means that the HICAP classification requires less computation, although it is otherwise identical to the original classification. The computational savings afforded by HICAP increases with the number of dimensions in the data.  相似文献   

2.
Segmentation is an important research area in image processing, which has been used to extract objects in images. A variety of algorithms have been proposed in this area. However, these methods perform well on the images without noise, and their results on the noisy images are not good. Neutrosophic set (NS) is a general formal framework to study the neutralities’ origin, nature, and scope. It has an inherent ability to handle the indeterminant information. Noise is one kind of indeterminant information on images. Therefore, NS has been successfully applied into image processing algorithms. This paper proposed a novel algorithm based on neutrosophic similarity clustering (NSC) to segment gray level images. We utilize the neutrosophic set in image processing field and define a new similarity function for clustering. At first, an image is represented in the neutrosophic set domain via three membership sets: T, I and F. Then, a neutrosophic similarity function (NSF) is defined and employed in the objective function of the clustering analysis. Finally, the new defined clustering algorithm classifies the pixels on the image into different groups. Experiments have been conducted on a variety of artificial and real images. Several measurements are used to evaluate the proposed method's performance. The experimental results demonstrate that the NSC method segment the images effectively and accurately. It can process both images without noise and noisy images having different levels of noises well. It will be helpful to applications in image processing and computer vision.  相似文献   

3.
Recent results from human vision experiments show that lines of low fractal dimension are highly capable of evoking indification with nameable objects. In other words, regular lines are recognized in human vision as object edges. In this paper, a regularity measure of discrete line geometry is presented. This quantitative measure based on a ratio between lines of varying lengths is analyzed in the framework of brownian motion theory. The measure on a given scale is always computed from the maximum precision image, so that no subresolution assumption is introduced. A choice of scale determines the quantity of global information versus local information one wants to measure. We show how this quantitative measure leads to relevant shape information. To illustrate this, an example of an image segmentation application is realized. The segmentation based essentially on geometry criteria, uses a region-growing process. The process depends on a single parameter that can be fixed in a natural way, comparing contour regularity to a geometric model regularity. We present experimental results performed on real-scene images, including indoor and outdoor images.  相似文献   

4.
The development of common and reasonable criteria for evaluating and comparing the performance of segmentation algorithms has always been a concern for researchers in the area. As it is discussed in the paper, some of the measures proposed are not adequate for general images (i.e. images of any sort of scene, without any assumption about the features of the scene objects or the illumination distribution) because they assume a certain distribution of pixel gray-level or colour values for the interior of the regions. This paper reviews performance measures not performing such an assumption and proposes a set of new performance measures in the same line, called the percentage of correctly grouped pixels (CG), the percentage of over-segmentation (OS) and the percentage of under-segmentation (US). Apart from accounting for misclassified pixels, the proposed set of new measures are intended to compute the level of fragmentation of reference regions into output regions and vice versa. A comparison involving similar measures is provided at the end of the paper.  相似文献   

5.
We present an approach to automatic image segmentation, in which user selected sets of examples and counter-examples supply information about the specific segmentation problem. In our approach, image segmentation is guided by a genetic algorithm which learns the appropriate subset and spatial combination of a collection of discriminating functions, associated with image features. The genetic algorithm encodes discriminating functions into a functional template representation, which can be applied to the input image to produce a candidate segmentation. The performance of each candidate segmentation is evaluated within the genetic algorithm, by a comparison to two physics-based techniques for region growing and edge detection. Through the process of segmentation, evaluation, and recombination, the genetic algorithm optimizes functional template design efficiently. Results are presented on real synthetic aperture radar (SAR) imagery of varying complexity.  相似文献   

6.
7.
This article describes a multiobjective spatial fuzzy clustering algorithm for image segmentation. To obtain satisfactory segmentation performance for noisy images, the proposed method introduces the non-local spatial information derived from the image into fitness functions which respectively consider the global fuzzy compactness and fuzzy separation among the clusters. After producing the set of non-dominated solutions, the final clustering solution is chosen by a cluster validity index utilizing the non-local spatial information. Moreover, to automatically evolve the number of clusters in the proposed method, a real-coded variable string length technique is used to encode the cluster centers in the chromosomes. The proposed method is applied to synthetic and real images contaminated by noise and compared with k-means, fuzzy c-means, two fuzzy c-means clustering algorithms with spatial information and a multiobjective variable string length genetic fuzzy clustering algorithm. The experimental results show that the proposed method behaves well in evolving the number of clusters and obtaining satisfactory performance on noisy image segmentation.  相似文献   

8.
In recent years, spectral clustering has become one of the most popular clustering algorithms in areas of pattern analysis and recognition. This algorithm uses the eigenvalues and eigenvectors of a normalized similarity matrix to partition the data, and is simple to implement. However, when the image is corrupted by noise, spectral clustering cannot obtain satisfying segmentation performance. In order to overcome the noise sensitivity of the standard spectral clustering algorithm, a novel fuzzy spectral clustering algorithm with robust spatial information for image segmentation (FSC_RS) is proposed in this paper. Firstly, a non-local-weighted sum image of the original image is generated by utilizing the pixels with a similar configuration of each pixel. Then a robust gray-based fuzzy similarity measure is defined by using the fuzzy membership values among gray values in the new generated image. Thus, the similarity matrix obtained by this measure is only dependent on the number of the gray-levels and can be easily stored. Finally, the spectral graph partitioning method can be applied to this similarity matrix to group the gray values of the new generated image and then the corresponding pixels in the image are reclassified to obtain the final segmentation result. Some segmentation experiments on synthetic and real images show that the proposed method outperforms traditional spectral clustering methods and spatial fuzzy clustering in efficiency and robustness.  相似文献   

9.
In this paper we present a comparative evaluation of four popular interactive segmentation algorithms. The evaluation was carried out as a series of user-experiments, in which participants were tasked with extracting 100 objects from a common dataset: 25 with each algorithm, constrained within a time limit of 2 min for each object. To facilitate the experiments, a “scribble-driven” segmentation tool was developed to enable interactive image segmentation by simply marking areas of foreground and background with the mouse. As the participants refined and improved their respective segmentations, the corresponding updated segmentation mask was stored along with the elapsed time. We then collected and evaluated each recorded mask against a manually segmented ground truth, thus allowing us to gauge segmentation accuracy over time. Two benchmarks were used for the evaluation: the well-known Jaccard index for measuring object accuracy, and a new fuzzy metric, proposed in this paper, designed for measuring boundary accuracy. Analysis of the experimental results demonstrates the effectiveness of the suggested measures and provides valuable insights into the performance and characteristics of the evaluated algorithms.  相似文献   

10.
Many image segmentation methods utilize graph structures for representing images, where the flexibility and generality of the abstract structure is beneficial. By using a fuzzy object representation, i.e., allowing partial belongingness of elements to image objects, the unavoidable loss of information when representing continuous structures by finite sets is significantly reduced, enabling feature estimates with sub-pixel precision.This work presents a framework for object representation based on fuzzy segmented graphs. Interpreting the edges as one-dimensional paths between the vertices of a graph, we extend the notion of a graph cut to that of a located cut, i.e., a cut with sub-edge precision. We describe a method for computing a located cut from a fuzzy segmentation of graph vertices. Further, the notion of vertex coverage segmentation is proposed as a graph theoretic equivalent to pixel coverage segmentations and a method for computing such a segmentation from a located cut is given. Utilizing the proposed framework, we demonstrate improved precision of area measurements of synthetic two-dimensional objects. We emphasize that although the experiments presented here are performed on two-dimensional images, the proposed framework is defined for general graphs and thus applicable to images of any dimension.  相似文献   

11.
In the study, a novel segmentation technique is proposed for multispectral satellite image compression. A segmentation decision rule composed of the principal eigenvectors of the image correlation matrix is derived to determine the similarity of image characteristics of two image blocks. Based on the decision rule, we develop an eigenregion-based segmentation technique. The proposed segmentation technique can divide the original image into some proper eigenregions according to their local terrain characteristics. To achieve better compression efficiency, each eigenregion image is then compressed by an efficient compression algorithm eigenregion-based eigensubspace transform (ER-EST). The ER-EST contains 1D eigensubspace transform (EST) and 2D-DCT to decorrelate the data in spectral and spatial domains. Before performing EST, the dimension of transformation matrix of EST is estimated by an information criterion. In this way, the eigenregion image may be approximated by a lower-dimensional components in the eigensubspace. Simulation tests performed on SPOT and Landsat TM images have demonstrated that the proposed compression scheme is suitable for multispectral satellite image.  相似文献   

12.
Image segmentation is a major task of handwritten document image processing. Many of the proposed techniques for image segmentation are complementary in the sense that each of them using a different approach can solve different difficult problems such as overlapping, touching components, influence of author or font style etc. In this paper, a combination method of different segmentation techniques is presented. Our goal is to exploit the segmentation results of complementary techniques and specific features of the initial image so as to generate improved segmentation results. Experimental results on line segmentation methods for handwritten documents demonstrate the effectiveness of the proposed combination method.  相似文献   

13.
Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained eigenvalues problems. In this paper, we improve and adapt a recent statistical region merging approach to this task, as a non-parametric mixture model estimation problem. The approach appears to be attractive both for its theoretical benefits and its experimental results, as slight bias brings dramatic improvements over unbiased approaches on challenging digital pictures.  相似文献   

14.
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach.  相似文献   

15.
We detect facial features and then circumscribe each facial feature with the smallest rectangle possible by using vertical and horizontal gray value projections of pixels. The result is evaluated with respect to the manually located enclosing rectangle on the images of a publicly available database.  相似文献   

16.
This article describes a new approach to perform image segmentation. First an image is locally modeled using a spatial autoregressive model for the image intensity. Then the residual autoregressive image is computed. This resulting image possesses interesting texture features. The borders and edges are highlighted, suggesting that our algorithm can be used for border detection. Experimental results with real images are provided to verify how the algorithm works in practice. A robust version of our algorithm is also discussed, to be used when the original image is contaminated with additive outliers. A novel application in the context of image inpainting is also offered.  相似文献   

17.
Each year, numerous segmentation and classification algorithms are invented or reused to solve problems where machine vision is needed. Generally, the efficiency of these algorithms is compared against the results given by one or many human experts. However, in many situations, the location of the real boundaries of the objects as well as their classes are not known with certainty by the human experts. Furthermore, only one aspect of the segmentation and classification problem is generally evaluated. In this paper we present a new evaluation method for classification and segmentation of image, where we take into account both the classification and segmentation results as well as the level of certainty given by the experts. As a concrete example of our method, we evaluate an automatic seabed characterization algorithm based on sonar images.  相似文献   

18.
The incorporation of spatial context into clustering algorithms for image segmentation has recently received a significant amount of attention. Many modified clustering algorithms have been proposed and proven to be effective for image segmentation. In this paper, we propose a different framework for incorporating spatial information with the aim of achieving robust and accurate segmentation in case of mixed noise without using experimentally set parameters based on the original robust information clustering (RIC) algorithm, called adaptive spatial information-theoretic clustering (ASIC) algorithm. The proposed objective function has a new dissimilarity measure, and the weighting factor for neighborhood effect is fully adaptive to the image content. It enhances the smoothness towards piecewise-homogeneous segmentation and reduces the edge blurring effect. Furthermore, a unique characteristic of the new information segmentation algorithm is that it has the capabilities to eliminate outliers at different stages of the ASIC algorithm. These result in improved segmentation result by identifying and relabeling the outliers in a relatively stronger noisy environment. Comprehensive experiments and a new information-theoretic proof are carried out to illustrate that our new algorithm can consistently improve the segmentation result while effectively handles the edge blurring effect. The experimental results with both synthetic and real images demonstrate that the proposed method is effective and robust to mixed noise and the algorithm outperforms other popular spatial clustering variants.  相似文献   

19.
Most of the traditional histogram-based thresholding techniques are effective for bi-level thresholding and unable to consider spatial contextual information of the image for selecting optimal threshold. In this article a novel thresholding technique is presented by proposing an energy function to generate the energy curve of an image by taking into an account the spatial contextual information of the image. The behavior of this energy curve is very much similar to the histogram of the image. To incorporate spatial contextual information of the image for threshold selection process, this energy curve is used as an input of our technique instead of histogram. Moreover, to mitigate multilevel thresholding problem the properties of genetic algorithm are exploited. The proposed algorithm is evaluated on the number of different types of images using a validity measure. The results of the proposed technique are compared with those obtained by using histogram of the image and also with an existing genetic algorithm based context sensitive technique. The comparisons confirmed the effectiveness of the proposed technique.  相似文献   

20.
Segmentation of the different feature based data in a dataset is a challenging proposition in the image processing community. There exist different techniques to solve this problem satisfactorily. A color image is an example of three-dimensional dataset and it consists of a collection of three primary color intensity features. In this article, we focus on the segmentation of true color test images, based on all possible combination of color intensity features. A multilevel sigmoidal (MUSIG) activation function that is applied in the self-organizing neural network architecture is quite efficient enough to segment multilevel gray level intensity images. The function uses equal and fixed class responses, ignoring the heterogeneity of image information content. The optimized version of MUSIG (OptiMUSIG) activation function for the self-organizing neural network architecture can be generated with the optimized class responses from the image content and can be used to effectively segment multilevel gray level intensity images as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号