首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The first step of the reaction catalysed by the enzyme citrate synthase is studied here with high level combined quantum mechanical/molecular mechanical (QM/MM) methods (up to the MP2/6-31+G(d)//6-31G(d)/CHARMM level). In the first step of the reaction, acetyl-CoA is deprotonated by Asp375, producing an intermediate, which is the nucleophile for attack on the second substrate, oxaloacetate, prior to hydrolysis of the thioester bond of acetyl-CoA and release of the products. A central question has been whether the nucleophilic intermediate is the enolate of acetyl-CoA, the enol, or an 'enolic' intermediate stabilized by a 'low-barrier' hydrogen bond with His274 at the active site. The imidazole sidechain of His274 is neutral, and donates a hydrogen bond to the carbonyl oxygen of acetyl-CoA in substrate complexes. We have investigated the identity of the nucleophilic intermediate by QM/MM calculations on the substrate (keto), enolate, enol and enolic forms of acetyl-CoA at the active site of citrate synthase. The transition states for proton abstraction from acetyl-CoA by Asp375, and for transfer of the hydrogen bonded proton between His274 and acetyl-CoA have been modelled approximately. The effects of electron correlation are included by MP2/6-31G(d) and MP2/6-31+G(d) calculations on active site geometries produced by QM/MM energy minimization. The results do not support the hypothesis that a low-barrier hydrogen bond is involved in catalysis in citrate synthase, in agreement with earlier calculations. The acetyl-CoA enolate is identified as the only intermediate consistent with the experimental barrier for condensation, stabilized by conventional hydrogen bonds from His274 and a water molecule.  相似文献   

2.
Aspartate ammonia lyase (Asp) is one of three types of ammonia lyases specific for aspartate or its derivatives as substrates, which catalyzes the reversible reaction of l-aspartate to yield fumarate and ammonia. In this paper, the catalytic mechanism of Asp has been studied by using combined quantum-mechanical/molecular-mechanical (QM/MM) approach. The calculation results indicate that the overall reaction only contains two elementary steps. The first step is the abstraction of Cβ proton of l-aspartate by Ser318, which is calculated to be rate limiting. The second step is the cleavage of CαN bond of l-aspartate to form fumarate and ammonia. Ser318 functions as the catalytic base, whereas His188 is a dispensable residue, but its protonation state can influence the active site structure and the existing form of leaving amino group, thereby influences the activity of the enzyme, which can well explain the pH dependence of enzymatic activity. Mutation of His188 to Ala only changes the active site structure and slightly elongates the distance of Cβ proton of substrate with Ser318, causing the enzyme to remain significant but reduced activity.  相似文献   

3.
克氏锥虫唾液酸转移酶(TcTs)是恰加斯病的致病原,它具有由6个β片构成的桶状催化结构域。该催化结构域集中在酶N端的边缘。本文利用量子力学/分子力学(QM/MM)联用的模型研究了克氏锥虫唾液酸转移酶的催化机理。初始酶和底物复合物模型由蛋白质晶体数据库得到(PDB ID:lSOI)。其中QM部分在半经验模型中由AM1描述,在从头算模型中由B3LYP/6-3lG*描述。MM部分只取酶的N端结构域,并始终由AMBER力场来描述。QM部分与MM部分成键相互作用边界用pseudo-bond方法处理,将3个重要的氨基酸残基(Glu230,Asp59,Tyr342)的Cβ-Cβ键作为OM/MM模型中的pseudo-bond。由Nudged Elastic Band(NEB)路径优化方法得到的TcTs半经验的最低能量反应路径中,关键原子间距离沿最低能量路径的变化表明:反应开始后Glu230开始靠近Tyr342,当它们之间的氢键距离由2.9 A缩短为2.4 A时,Tyr342将质子转移给Glu230,增强了Tyr342酚氧负离子的碱性,更有利于Tyr342亲核进攻糖苷键。同时,Asp59作为酸,提供质子给糖苷键断裂后的离去基团。过程中,伴随着唾液酸的单糖糖环从扭曲的船式构象向松弛的椅式构象的转变,从而更有利于稳定生成的共价唾液酸-酶中间产物。对得到的半经验的最低能量反应路径再做B3LYP/6-31G*/MM模型下的优化,得到反应的能垒约为13.53 kcal/mol,说明该反应路径是合理的。研究结果与实验上通过突变的TcTsD59A推测的乒乓双置换酸碱催化的机理一致,是对实验结论的有力支持,为TcTs抑制剂的设计和结构修饰提供了理论参考,有助于预防和抗恰加斯病的新药物研发。  相似文献   

4.
5.
Using combined semiempirical quantum mechanics and molecular mechanics (QM/MM) and ab initio self-consistent reaction field (SCRF) calculations, we determined that a low-barrier hydrogen bond (LBHB) is formed when the mechanism-based substrate 8-methylpterin binds to dihydrofolate reductase (DHFR). The substrate initially was assumed bound either in the ion-pair form corresponding to N3-protonated substrate hydrogen (H) bonded to the unprotonated (carboxylate) of the conserved Glu30 residue in the active site, or in the neutral-pair form corresponding to unprotonated substrate H bonded to the neutral (carboxylic acid) from of Glu30. The free energy of interaction of these H-bonded systems with the protein/solvent surroundings was computed using a coordinate-coupled free energy perturbation (FEP) method implemented within the molecular dynamics (MD) simulation scheme and using a semiempirical (PM3) QM/MM force field. The free energy obtained from the QM/MM force-field simulations corresponds most closely with the corresponding free energy component obtained from HF/6-31G* SCRF calculations using a value of 2 for the dielectric constant (epsilon) for the solvated protein. Calculations were performed at levels ranging from HF/6-31G to MP2/6-31G* to B3LYP/6-31 + G**, with varying dielectric constants. The energy-minimized path for motion of the proton in the H bond along a one-dimensional reaction coordinate was calculated at HF/6-31G, HF/6-31G* (epsilon = 1) and B3LYP/6-31G* (epsilon = 2) levels. These calculations identified a second neutral-pair complex, involving the 2-amino group of substrate, which also interacts with Glu30, which is lower in energy than the ion-pair form. A harmonic vibrational analysis shows that the first vibrational state appears to lie near or above the TS connecting potential energy minima corresponding to the two neutral-pair configurations, thus indicating an LBHB. Consequently, the H-bonded system will have a significant probability of being found in the ion-pair form, in agreement with experimental spectral studies indicating an enzyme-bound cation and suggesting that the LBHB would activate substrate towards hydride-ion transfer from NADPH.  相似文献   

6.
QM cluster and QM/MM protein models have been employed to understand aspects of the reaction mechanism of plant allene oxide synthase (pAOS). In this study we have investigated two reaction mechanisms for pAOS. The standard pAOS mechanism was contrasted with an alternative involving an additional active site molecule which has been shown to facilitate proton coupled electron transfer (PCET) in related systems. Firstly, we found that the results from QM/MM protein model are comparable with those from the QM cluster model, presumably due to the large active site used. Furthermore, the results from the QM cluster model show that the FeIII and FeIV pathways for the standard mechanism have similar energetic and structural properties, indicating that the reaction mechanism may well proceed via both pathways. However, while the PCET process is facilitated by an additional active site bound water in other related families, in pAOS it is not, suggesting this type of process is not general to all closely related family members.  相似文献   

7.
In this quantum mechanics/molecular mechanics (QM/MM) study, the mechanisms of the hydrolytic cleavage of the Met2-Asp3 and Leu2-Asp3 peptide bonds of the amyloid precursor protein (WT-substrate) and its Swedish mutant (SW) respectively catalyzed by β-secretase (BACE1) have been investigated by explicitly including the electrostatic and steric effects of the protein environment in the calculations. BACE1 catalyzes the rate-determining step in the generation of Alzheimer amyloid beta peptides and is widely acknowledged as a promising therapeutic target. The general acid-base mechanism followed by the enzyme proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. The formation of the gem-diol intermediate occurs with the barriers of 19.6 and 16.1 kcal/mol for the WT- and SW-substrate respectively. The QM/MM energetics predict that with the barriers of 21.9 and 17.2 kcal/mol for the WT- and SW-substrate respectively the cleavage of the peptide bond occurs in the rate-determining step. The computed barriers are in excellent agreement with the measured barrier of ∼18.0 kcal/mol for the SW-substrate and in line with the experimental observation that the cleavage of this substrate is sixty times more efficient than the WT-substrate.  相似文献   

8.
9.
As members of the α/β-hydrolase superfamily, Meta-cleavage product (MCP) hydrolases generally utilize a Ser-His-Asp catalytic triad to hydrolyze the cleavage of CC bond during the aerobic catabolism of aromatic compounds by bacteria. BphD is one kind of MCP hydrolase that catalyzes the hydrolysis of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) to 2-hydroxypenta-2,4-dienoic acid (HPD) and benzoate. In this article, a combined quantum mechanics and molecule mechanics (QM/MM) approach has been employed to explore the reaction mechanism of BphD from Burkholderia xenovorans LB400. On the basis of the recently resolved crystal structures, three computational models have been constructed. Our calculation results reveal that BphD utilizes a water-assisted nucleophilic mechanism, which contains acylation and deacylation stages. In acylation reaction, an active site water molecule assists the proton transfer from Ser112 to the carbanion intermediate (substrate) by forming hydrogen bonds with Ser112 and His265, and this proton transfer is in concert with the nucleophilic attack of deprotonated Ser112 on the C6-carbonyl of substrate to form the acylated intermediate. In deacylation, the Asp237-His265 dyad acts as a general base to activate the hydrolytic water, whose nucleophilic attack leads to the collapses of acyl-enzyme intermediate. The acylation and deacylation process correspond to the highest energy barriers of 21.0 and 23.9 kcal/mol, respectively. During the catalytic reaction, the active site water and Asp237-His265 dyad play an important role for each elementary steps.  相似文献   

10.
The reaction pathway for the aromatic 3-hydroxylation of p-hydroxybenzoate by the reactive C4a-hydroperoxyflavin cofactor intermediate in p-hydroxybenzoate hydroxylase (PHBH) has been investigated by a combined quantum mechanical and molecular mechanical (QM/MM) method. A structural model for the C4a-hydroperoxyflavin intermediate in the PHBH reaction cycle was built on the basis of the crystal structure coordinates of the enzyme-substrate complex. A reaction pathway for the subsequent hydroxylation step was calculated by imposing a reaction coordinate that involves cleavage of the peroxide oxygen-oxygen bond and formation of the carbon-oxygen bond between the C3 atom of the substrate and the distal oxygen of the peroxide moiety of the cofactor. The geometric changes and the Mulliken charge distributions along the calculated reaction pathway are in line with an electrophilic aromatic substitution type of mechanism. The energy barrier of the calculated reaction is considerably lower when the substrate hydroxyl moiety is deprotonated, in comparison with the barrier found with a protonated hydroxyl moiety. This effect of the protonation state of the substrate on the calculated energy barrier supports experimental observations that deprotonation is required for hydroxylation of the substrate. A notable event in the calculated reaction pathway is a lengthening of the peroxide oxygen-oxygen bond at an intermediate stage. Further analysis of the reaction pathway indicates that this oxygen-oxygen bond elongation is accompanied by an increase in electrophilic reactivity on the distal oxygen of the peroxide moiety, which may assist the C-O bond formation in the reaction of the C4a-hydroperoxyflavin intermediate with the substrate. Analysis of the effect of individual active site residues on the reaction reveals a specific transition state stabilization by the backbone carbonyl moiety of Pro293. The crystal water 717 appears to drive the hydroxylation step through a stabilizing hydrogen bond interaction to the proximal oxygen of the C4a-hydroperoxyflavin intermediate, which increases in strength as the hydroperoxyflavin cofactor converts to the anionic (deprotonated) hydroxyflavin.  相似文献   

11.
To understand the basis of drug resistance, particularly of the HIV-1 PR, three molecular dynamics (MD) simulations of HIV-1 PR mutant species, G48V, complexed with saquinavir (SQV) in explicit aqueous solution with three protonation states, diprotonation on Asp25 and Asp25' (Di-pro) and monoprotonation on each Asp residue (Mono-25 and Mono-25'). For all three states, H-bonds between saquinavir and HIV-1 PR were formed only in the two regions, flap and active site. It was found that conformation of P2 subsite of SQV in the Mono-25 state differs substantially from the other two states. The rotation about 177 degrees from the optimal structure of the wild type was observed, the hydrogen bond between P2 and the flap residue (Val48) was broken and indirect hydrogen bonds with the three residues (Asp29, Gly27, and Asp30) were found instead. In terms of complexation energies, interaction energy of -37.3 kcal/mol for the Mono-25 state is significantly lower than those of -30.7 and -10.7kcal/mol for the Mono-25' and Di-pro states, respectively. It was found also that protonation at the Asp25 leads to a better arrangement in the catalytic dyad, i.e., the Asp25-Asp25' interaction energy of -8.8 kcal/mol of the Mono-25 is significantly lower than that of -2.6kcal/mol for the Mono-25' state. The above data suggest us to conclude that interaction in the catalytic area should be used as criteria to enhance capability in drug designing and drug screening instead of using the total inhibitor/enzyme interaction.  相似文献   

12.
The catalytic mechanism of a FAD-dependent nitrososynthase (ORF36) was studied with molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) methods. Residues Leu160 and Phe374 play an important role during the FAD binding with ORF36. Similar phenylalanine/leucine pair was found in the other two enzymes of this family. For the second oxidation step of ORF36 toward thymidine diphosphate-l-epi-vancosamine, three elementary catalytic steps were found: a hydroxylation step, a hydrogen back-transfer step and a hydroxyl group elimination step. The hydroxylation step is found to be the rate-determining step with an energy barrier of 26.3 kcal/mol under the B3LYP/cc-pVTZ//CHARMM22 level. Two possible pathways for the second oxidation step are carefully investigated. Our simulations indicate that an oxygen atom from the coenzyme FADHOOH is inserted into the product. In addition, the electrostatic influence of 17 individual residues and five neighboring water molecules on the rate-determining step was estimated. The results indicate that groups Gly132/Ala133/Leu134, Met375/Gln376 and a water fence play a key role in facilitating the rate-determining step. On the other hand, residues Leu160, Val161 and Ser162 are found to be critical to suppress the rate-determining step. Our results lead to further understanding of the detailed catalytic pathways for nitro sugar biosynthesis.  相似文献   

13.
BACE1 is an aspartyl protease which is a therapeutic target for Alzheimer’s disease (AD) because of its participation in the rate-limiting step in the production of Aβ-peptide, the accumulation of which produces senile plaques and, in turn, the neurodegenerative effects associated with AD. The active site of this protease is composed in part by two aspartic residues (Asp93 and Asp289). Additionally, the catalytic site has been found to be covered by an antiparallel hairpin loop called the flap. The dynamics of this flap are fundamental to the catalytic function of the enzyme. When BACE1 is inactive (Apo), the flap adopts an open conformation, allowing a substrate or inhibitor to access the active site. Subsequent interaction with the ligand induces flap closure and the stabilization of the macromolecular complex. Further, the protonation state of the aspartic dyad is affected by the chemical nature of the species entering the active site, so that appropriate selection of protonation states for the ligand and the catalytic residues will permit the elucidation of the inhibitory pathway for BACE1. In the present study, comparative analysis of different combinations of protonation states for the BACE1-hydroxyethylamine (HEA) system is reported. HEAs are potent inhibitors of BACE1 with favorable pharmacological and kinetic properties, as well as oral bioavailability. The results of Molecular Dynamics (MD) simulations and population density calculations using 8 different parameters demonstrate that the LnAsp289 configuration (HEA with a neutral amine and the Asp289 residue protonated) is the only one which permits the expected conformational change in BACE1, from apo to closed form, after flap closure. Additionally, differences in their capacities to establish and maintain interactions with residues such as Asp93, Gly95, Thr133, Asp289, Gly291, and Asn294 during this step allow differentiation among the inhibitory activities of the HEAs. The results and methodology here reported will serve to elucidate the inhibitory pathway of other families of compounds that act as BACE1 inhibitors, as well as the design of better leader compounds for the treatment of AD.  相似文献   

14.
Developing small compound based drugs targeting the β-secretase (BACE) enzyme is one of the most promising strategies in treatment of the Alzheimer’s disease. As the enzyme shows the activity based on the acid-base reaction at a very narrow pH range, the protonation state of aspartic acids with the residue number 32 and 228 (Asp32 and Asp228), which forms the active site dyad, along with the protonation state of the ligand (substrate or inhibitor) play very critical role in interactions between the ligand and enzyme. Thus, understanding the nature of the protonation state of both enzyme’s active site dyad and ligand is crucial for drug design in Alzheimer’s disease field. Here we have investigated the protonation state of the Asp32 and Asp228 residues in the presence of a highly potent beta secretase inhibitor, containing acyl guanidine warhead that have recently been devised but not extensively studied. Our Quantum Mechanical, Molecular Dynamics and Docking studies on all the possible protonation states have suggested that the dyad residues are in di-deprotonated states in the presence of protonated inhibitor.  相似文献   

15.
Severe acute respiratory syndrome (SARS) is an illness caused by a novel corona virus wherein the main proteinase called 3CL(Pro) has been established as a target for drug design. The mechanism of action involves nucleophilic attack by Cys145 present in the active site on the carbonyl carbon of the scissile amide bond of the substrate and the intermediate product is stabilized by hydrogen bonds with the residues of the oxyanion hole. Based on the X-ray structure of 3CL(Pro) co-crystallized with a trans-alpha,beta-unsaturated ethyl ester (Michael acceptor), a set of QM/QM and QM/MM calculations were performed, yielding three models with increasingly higher the number of atoms. A previous validation step was performed using classical theoretical calculation and PROCHECK software. The Michael reaction studies show an exothermic process with -4.5 kcal/mol. During the reaction pathway, an intermediate is formed by hydrogen and water molecule migration from a histidine residue and solvent, respectively. In addition, similar with experimental results, the complex between N3 and 3CL(Pro) is 578 kcal/mol more stable than N1-3CL(Pro) using Own N-layer Integrated molecular Orbital molecular Mechanics (ONIOM) approach. We suggest 3CL(Pro) inhibitors need small polar groups to decrease the energy barrier for alkylation reaction. These results can be useful for the development of new compounds against SARS.  相似文献   

16.
Small changes in ligand structure can lead to large unexpected changes in activity yet it is often not possible to rationalize these effects using empirical modeling techniques, suggesting more effective methods are required. In this study we investigate the use of high level QM methods to study the interactions found within protein-ligand complexes as improved understanding of these could help in the design of new, more active molecules. We study aspects of ligand binding in a set of protein ligand complexes containing ligand efficient, fragment-like inhibitors as these structures are often challenging to determine experimentally. To assess the reliability of our theoretical models we compare the MP2/6-31+G** QM results to the original X-ray coordinates and to QM/MM B3LYP/6-31G*//UFF results which we have previously reported. We also contrast these results with data obtained from an analysis of the distribution of comparable interactions found in (a) high resolution kinase complexes (≤ 1.8?) from the PDB and (b) more generic, small molecule crystal structures from the CSD.  相似文献   

17.
CucurbitacinE (CurE) has been known to bind covalently to F-actin and inhibit depolymerization. However, the mode of binding of CurE to F-actin and the consequent changes in the F-actin dynamics have not been studied. Through quantum mechanical/molecular mechanical (QM/MM) and density function theory (DFT) simulations after the molecular dynamics (MD) simulations of the docked complex of F-actin and CurE, a detailed transition state (TS) model for the Michael reaction is proposed. The TS model shows nucleophilic attack of the sulphur of Cys257 at the β-carbon of Michael Acceptor of CurE producing an enol intermediate that forms a covalent bond with CurE. The MD results show a clear difference between the structure of the F-actin in free form and F-actin complexed with CurE. CurE affects the conformation of the nucleotide binding pocket increasing the binding affinity between F-actin and ADP, which in turn could affect the nucleotide exchange. CurE binding also limits the correlated displacement of the relatively flexible domain 1 of F-actin causing the protein to retain a flat structure and to transform into a stable “tense” state. This structural transition could inhibit depolymerization of F-actin. In conclusion, CurE allosterically modulates ADP and stabilizes F-actin structure, thereby affecting nucleotide exchange and depolymerization of F-actin.  相似文献   

18.
Aspergillus niger is an industrially important microorganism used in the production of citric acid. It is a common cause of food spoilage and represents a health issue for patients with compromised immune systems. Recent studies on Aspergillus niger have revealed details on the isocitrate lyase (ICL) superfamily and its role in catabolism, including (2R, 3S)-dimethylmalate lyase (DMML). Members of this and related lyase super families are of considerable interest as potential treatments for bacterial and fungal infections, including Tuberculosis. In our efforts to better understand this class of protein, we investigate the catalytic mechanism of DMML, studying five different substrates and two different active site metals configurations using molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. We show that the predicted barriers to reaction for the substrates show good agreement with the experimental kcat values. This results help to confirm the validity of the proposed mechanism and open up the possibility of developing novel mechanism based inhibitors specifically for this target.  相似文献   

19.
Fructosyltransferases (FTs) act on sucrose by cleaving the β-(2  1) linkage, releasing glucose, and then transferring the fructosyl group to an acceptor molecule. These enzymes are capable of producing prebiotic fructooligosaccharides (FOSs) that are of industrial interest. While several FOS-synthesizing enzymes FTs have been investigated, their catalytic mechanism is not yet fully understood, especially the molecular details of how FOS are enzymatically synthesized from sucrose. Here, we present a comparative quantum mechanics/molecular mechanics (QM/MM) study on the hydrolysis and transfructosylation reactions catalyzed by A. japonicus FT using sucrose as donor and acceptor substrates. It is shown that the hydrolysis and transfructosylation reactions of the enzyme seem to be competitive with similar potential energy profiles. For all studied reaction steps, the fructosyl ring bound in the −1 position was observed to have a 4E conformation in the oxocarbonium ion-like transition state. Based on the SCC-DFTB/MM simulations of sucrose complexes of wildtype and D191A mutant FT, Asp191 is shown to be responsible for the productive sugar conformation (at subsite −1) required for catalysis. A key interaction, Asp119⋯nucleophile⋯1–OH (substrate), is proposed to facilitate the formation of fructosyl-enzyme intermediate. This is the first computational study for understanding the FOS synthesis process, and it can be applicable to related FOS-synthesizing enzymes.  相似文献   

20.
The mechanism for inhibition of carboxypeptidase A (CPA) by the two enantiomers of a reactive inhibitor, N-(2-chloroethyl)-N-methylphenylalanine, has been investigated using computational methods. Quantum mechanical and molecular mechanical (QM/MM) methods have been employed to find likely enzyme binding conformations by comparison with the observed rates of inactivation of the enzyme. The study has shown that the enzyme active site appears to be flexible enough to allow the nucleophilic deactivation reactions of both the (R) and (S) forms of a model of the inhibitor to be catalysed by the Zn(II) cofactor of CPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号