首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
齐祥羽  严玲  王长顺  张鹏  李广龙 《轧钢》2023,(2):24-29+63
为实现高锰钢良好的强韧性能匹配,对高锰钢中厚板进行了控轧控冷工艺试验,通过金相显微镜、扫描电镜和透射电镜观察了高锰钢中厚板的显微组织,采用拉伸和冲击试验机测定了高锰钢中厚板的综合力学性能。结果表明:高锰钢中厚板显微组织为单相奥氏体,奥氏体晶粒尺寸为10~20μm,碳化物弥散分布在奥氏体晶界处,且奥氏体晶粒内部存在较大尺寸的孪晶;高锰钢中厚板纵向屈服强度、抗拉强度、断后伸长率和-196℃冲击功分别为508 MPa、862 MPa、50.07%和124 J,高锰钢中厚板横向屈服强度、抗拉强度、断后伸长率和-196℃冲击功分别为511 MPa、856 MPa、51.67%和97 J;奥氏体晶界处弥散分布的硬相(Cr, Mn)23C6型碳化物,可有效提高高锰钢中厚板的强度;孪晶诱导塑性(TWIP)效应产生大量形变孪晶,增加了均匀伸长率,是高锰钢主要的增塑机制;软相奥氏体中形成的机械孪晶促进位错滑移和增殖,同时产生较强的晶粒细化效应,是高锰钢主要的韧化机制。  相似文献   

2.
采用EBSD、TEM等试验测试方法分析了退火温度对车轻量化用热轧高锰钢组织和拉伸性能的影响。结果表明:经过热轧退火处理得到的铁素体与奥氏体晶粒都表现为等轴状的外形特征。当退火温度上升后,奥氏体晶粒尺寸增大,铁素体晶粒尺寸降低。高锰钢试样组织中未出现再结晶现象,在铁素体晶粒中存在很低的位错密度。拉伸过程中,高锰钢试样中的奥氏体稳定性对马氏体转变过程造成了显著影响,奥氏体的稳定性越小,其转变为马氏体的速率就越快。当真应变为0.01时,在奥氏体晶粒中形成了许多层错,未生成马氏体组织。随着应变量增大到0.1时,很多奥氏体组织转变成了马氏体。  相似文献   

3.
异步轧制条件下高锰钢的显微组织与加工硬化机制   总被引:2,自引:2,他引:0  
在异步轧制条件下,研究了高锰钢的显微组织变化及其加工硬化机制。结果表明,经异步轧制后,随着变形量的增大,高锰钢中滑移带的密度逐渐增大;高锰钢晶粒内部出现大量的形变孪晶和高密度位错缠结,晶粒细化明显;高锰钢晶体在变形后仍然为面心立方的奥氏体,没有发生马氏体相变;在不同的变形量下,高锰钢中主要的加工硬化机制不同。  相似文献   

4.
国内某公司引进国外牌号GX-X120Mn12的高锰钢材料,开发生产铁路清筛机易损件扒碴板、链节头时存在显微组织不合格,强度低的问题,利用与其成分相当的国产ZGMn13Cr2高锰钢,对从国外引进的GX-X120Mn12高锰钢产品成分及工艺进行了优化研究。结果表明:严格控制高锰钢化学成分、强化水韧处理循环冷却措施及250℃回火处理,可获得奥氏体+细小颗粒均匀分布的C、Mn合金碳化物的显微组织,强度提高到790 MPa,硬度达到350 HBW。经该方法试制的扒碴板、链节头产品质量稳定,性能较好。  相似文献   

5.
合金化高锰钢ZGMn13CrMo的组织与性能研究   总被引:1,自引:0,他引:1  
通过对奥氏体高锰钢进行合金化和热处理工艺优化,研究了合金化高锰钢ZGMn13CrMo的力学性能、显微组织和耐磨性。结果表明,ZGMn13CrMo水韧处理后组织为奥氏体基体和均匀、细小、弥散分布的颗粒状碳化物。碳化物强化了奥氏体基体,冲击韧度是普通高锰钢的1.41倍,屈服强度是普通高锰钢的1.38倍,抗拉强度是普通高锰钢的1.25倍,耐磨性是普通高锰钢的1.35倍以上。  相似文献   

6.
通过对奥氏体高锰钢进行合金化和热处理工艺优化,研究了合金化高锰钢ZGMn13CrMo的力学性能、显微组织和耐磨性。结果表明,ZGMn13CrMo水韧处理后组织为奥氏体基体和均匀、细小、弥散分布的颗粒状碳化物。碳化物强化了奥氏体基体,冲击韧度是普通高锰钢的1.41倍,屈服强度是普通高锰钢的1.38倍,抗拉强度是普通高锰钢的1.25倍,耐磨性是普通高锰钢的1.35倍以上。  相似文献   

7.
对爆炸后高锰钢的表层和亚表层的物相进行XRD分析,对爆前、爆后衍射花样进行标定,对显微组织进行对比分析.结果表明:爆炸硬化处理后高锰钢的组织仍为奥氏体,未发生马氏体转变.爆炸硬化的微观机理为:在炸药爆炸产生的巨大爆轰压力作用下,爆后高锰钢晶体各晶面的晶格常数增大,加剧了晶格畸变,在高锰钢内部形成大量位错和层错,这些高密度的位错和层错阻碍位错运动,使高锰钢硬化.  相似文献   

8.
用光学金相显微镜、MLD-10型冲击磨损试验机及显微硬度计,研究了镧含量对衬板用高锰钢组织和性能的影响.结果表明,含有微量镧元素的高锰钢晶粒有所细化,在奥氏体基体中存在大量强化基体的碳化物;在低冲击功下,随着镧含量的增加,加工硬化程度增大,耐冲击腐蚀磨损性能增强.镧含量为0.1%改性高锰钢耐冲击腐蚀磨损性能最好,是一种优良的冶金矿山用湿式球磨机衬板用钢.  相似文献   

9.
碳含量对铸态Mn6系钢奥氏体稳定性的影响   总被引:1,自引:0,他引:1  
分析了碳含量的变化对铸态Mn6系钢显微组织的影响,探讨了Mn6系钢在铸态下碳含量与奥氏体稳定性的关系。结果表明,当碳含量在0.93%以下时,凝固组织中发生部分珠光体转变和马氏体转变;当碳含量在1.19%时,凝固组织为全奥氏体。而当碳含量达到1.28%时,凝固组织中开始析出第二相碳化物。含碳量1.19%为奥氏体稳定性的一个重要分界点。  相似文献   

10.
研究了含碳量对Mn8Cr2Si钢显微组织、力学性能、耐磨性能和耐腐蚀性能的影响。利用光学显微镜(OM)对奥氏体晶粒的尺寸变化进行观察,并利用扫描电子显微镜(SEM)分析冲击断口及磨损形貌。结果表明,随含碳量的增加,奥氏体晶粒逐渐细化,但当含碳质量分数超过0.8%时,晶粒开始粗化。由于奥氏体晶粒细化,其晶界总面积增大,应力集中降低,抑制了裂纹的形成与扩展。因此,奥氏体晶粒越细小,其力学性能越好,而力学性能的提升有助于提高其耐磨性能。分析发现,奥氏体晶粒尺寸同样影响Mn8Cr2Si钢的耐腐蚀性能,细化后的奥氏体晶粒能提高其耐腐蚀性能。当Mn8Cr2Si钢含碳质量分数为0.8%时,晶粒尺寸可细化到143μm,综合力学性能和耐腐蚀性能优异。  相似文献   

11.
在Gleeble—1500热模拟试验机上研究了20SiMn3NiA钢在不同连续冷却条件下相和组织变化,用热膨胀法测定了该钢的连续冷却转变曲线(动态CCT曲线)。研究结果表明,20SiMn3NiA钢中的Mn、Ni、Si等合金元素能有效地阻止铁素体和珠光体的形成,故20SiMn3NiA钢的过冷奥氏体连续冷却转变曲线只有马氏体和贝氏体相变区。当临界冷却速度大于1℃/s时,20SiMn3NiA钢就可以获得板条状马氏体组织,且随着冷却速度的增大,马氏体组织变得越来越细。与静态CCT曲线相比,形变使动态CCT曲线的Ms点升高,奥氏体稳定性降低,形变细化了马氏体和贝氏体组织,使20SiMn3NiA钢在1℃/s的冷却速率下产生较高的强度。  相似文献   

12.
以新型高锰低镍不锈钢为研究对象,研究了不同固溶和时效处理温度对其组织和性能的影响。结果表明,退火态和固溶态高锰低镍不锈钢均为单一奥氏体组织,随着固溶温度的提高,晶粒不断长大,析出物不断溶入材料基体,使材料强度和硬度不断降低,1050 ℃固溶处理后析出物基本上已全部固溶,此时抗拉强度为1016 MPa,伸长率和断面收缩率分别为67.43%和53.6%,此时塑性最好,故高锰低镍不锈钢的最佳固溶温度为1050 ℃。固溶+时效处理后高锰低镍不锈钢中的析出物主要为Cr的碳氮化物和Mn的硫化物,在750 ℃时效处理后析出物含量达到峰值,强度和硬度达到最高,故750 ℃为其最敏感析出温度。超过750 ℃析出物数量减少,850 ℃时材料塑性最好。  相似文献   

13.
对5%Mn冷轧中锰钢进行930 ℃×20 min淬火后再进行660、665、675、685 ℃保温30 min的逆相变退火处理,并用光学显微镜、扫描电镜、X射线衍射仪等研究退火温度对中锰钢组织和力学性能的影响。结果表明:5%Mn冷轧中锰钢经过高温淬火和逆相变退火后的组织为超细晶铁素体、板条马氏体和奥氏体。随着逆相变退火温度由660 ℃增加至685 ℃,奥氏体含量先增加后降低并在665 ℃逆相变退火后达到最大值,抗拉强度持续增加,屈服强度先升高后降低并在675 ℃退火时达到最大,伸长率先升高后降低并在665 ℃时达到最大值。综合来看,5%Mn中锰钢冷轧板经过930 ℃×20 min淬火和665 ℃×30 min逆相变退火后的综合力学性能最佳,此时奥氏体体积分数为24.24%,抗拉强度为980 MPa,伸长率为23.68%,强塑积达到了23.21GPa·%。  相似文献   

14.
利用相变热力学模拟计算,扫描电镜(SEM),X射线衍射仪(XRD),拉伸试验机等设备系统研究了不同退火工艺下0.2C-5Mn-1.5Al中锰TRIP钢的相变特点及组织性能,通过与不添加Al的0.2C-5Mn中锰TRIP钢进行比较,研究了Al对相变规律及工艺与组织性能的影响规律。结果表明:Al添加提高并扩大了临界区温度范围,使得中锰钢可以选择更高的临界退火温度,这有助于加快奥氏体逆相变过程,缩短退火时间;同时Al的添加促进了C,Mn元素的聚集,有效提高了残留奥氏体含量,增强了变形过程中的TRIP效应;随着退火温度的升高,0.2C-5Mn-1.5Al钢的奥氏体含量及伸长率均表现为先增加后减少的趋势,而屈服强度略微下降,拉伸强度持续增加,在760 ℃退火3 min时获得最佳的力学性能:伸长率为32%,强塑积为35 GPa·%,Al的添加有效提高了0.2C-5Mn中锰TRIP钢的综合力学性能。  相似文献   

15.
研究了C含量(质量分数)分别为0.06%、0.15%和0.30%的冷轧中锰钢Fe-6Mn-1Al退火后的组织及室温拉伸后的力学性能变化规律。结果表明,不同C含量的试验钢经660 ℃退火后的组织均为铁素体+奥氏体的双相组织。随着C含量的增加,试验钢中奥氏体的体积分数由19.34%增加到38.70%,且C含量的增加引起了配分到奥氏体中的C、Mn含量的增加,使奥氏体的稳定性得到了提升。C含量较高的试验钢变形过程中的TRIP效应更显著,使试验钢的加工硬化能力得到了提高,获得更好的综合力学性能。C含量从0.06%增加至0.30%,试验钢的强塑积由28.0 GPa·%增加到51.4 GPa·%。  相似文献   

16.
以0.1C-7.2Mn热轧和冷轧中锰钢为研究对象,采用扫描电镜(SEM)、X射线衍射仪(XRD)、室温拉伸试验等手段,研究了奥氏体逆相变(ART)退火后不同冷却方式对中锰钢加工硬化行为的影响。结果表明,热轧试验钢ART退火后得到板条状铁素体-奥氏体组织,退火后空冷试样中有大量碳化物析出,而水冷抑制了碳化物析出。冷轧试验钢ART退火后得到了等轴状铁素体-奥氏体组织,退火后空冷试样表现为连续屈服,而水冷促进了组织的等轴化;热轧试样获得更高体积分数的残留奥氏体,获得了优异的力学性能;残留奥氏体体积分数越大,拉伸变形过程中发生的TRIP效应越持久,提供更高、更持续的加工硬化。  相似文献   

17.
研究了变质Mn8Crl耐磨钢弥散处理过程中显微组织、物相硬度及成分的变化。结果表明,通过热处理获得理想弥散组织的条件:首先是奥氏体锰钢中含有适量的强碳化物形成元素,其次是使奥氏体尽可能充分地发生珠光体转变,三是适当控制高温阶段等温温度和时间。  相似文献   

18.
用一种焊接介质,采用等离子弧堆焊结合闪光对焊的方法将ZGMn13钢和U71Mn钢加焊接介质进行焊接。结果发现ZGMn13钢热影响区内无碳化物析出,U71Mn钢热影响区内无马氏体产生。中间介质为单相奥氏体组织,熔合区存在大约10%的δ铁素体  相似文献   

19.
The microstructural banding in steels is often found in hot rolling strips, which plays a very important role in mechanical properties. Much work has been done to investigate how the microstructural banding is formed during hot rolling. In the present study, the microstructure of hot rolling strips was examined in term of optical microscopy and transmission electron microscopy. Electron probe microanalysis was also used to decide the distribution of microchemical bands, by this means, the phases in these strips were found to be ferrite and pearlite. The average distance between the carbon lamellas in pearlite is about 0.06-0.1μm. It is also shown that microstructural banding in hot rolled carbon steel was closely related to the segregation of manganese and silicon into those bands. Based on the transformation kinetic, the simulated results pointed out that the thermodynamic stability of austenite would increase with the increasing of Mn, which led to a decrease of ferrite growth rate. The effect of Mn on the decomposition of austenite is attributed to segregation of Mn atoms along the ferrite/austenite phase boundary which causes a strong solute drag effect. The addition of Mn to steel decreases the activity of austenite, thereby it is beneficial to the formation of non-equilibrium phase, such as degenerate pearlite. The formation of banded structure on the hot rolled process was discussed.  相似文献   

20.
Microstructure evolution during ART-annealing (austenite reverted transformation annealing) of 0.2C-5Mn steel processed by austenitation at different temperatures was examined by SEM, TEM and XRD. It was demonstrated that the initial microstructures resulted from austenization at different temperatures strongly affect the microstructure evolution during followed ART-annealing, even the ultrafine grained ferrite/austenite duplex structure with about 30% austenite could be obtained after long time ART-annealing in all cases. Austenization in the intercritical region (between A c1 and A c3 ) gave a duplex structure after quenching, which was nearly not affected by followed annealing process. However, high temperature austenization (above A c3 ) resulted in a full martensite structure after quenching, which gradually transformed into a ferrite/austenite duplex structure during the following annealing process. Based on the analysis of austenite fraction and carbon concentrate, it was found that not only carbon partitioning but also manganese partitioning in the austenite affected the stability of austenite and even dominated the development of lamellar ferrite and austenite duplex structure during intercritical annealing with different times. At last an austenite lath nucleation and thickening model was proposed to describe the microstructure evolution of medium mangenese steel during ART-annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号