首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports the sensing response characteristics of rf-sputtered SnO2 thin films (90 nm thick) loaded with platinum catalyst cluster of varying thickness (2-20 nm) for LPG detection. The enhanced response (5 × 103) was obtained for 200 ppm LPG with the presence of 10 nm thin and uniformly distributed Pt catalyst clusters on the surface of SnO2 thin film at a relatively low operating temperature (220 °C). The high response for LPG is shown to be primarily due to the enhanced catalytic activity for adsorbed oxygen on the surface of SnO2 thin film besides the spill over mechanism at elevated temperature.  相似文献   

2.
The room temperature response characteristics of SnO2 thin film sensor loaded with platinum catalyst clusters are investigated for LPG under the exposure of ultraviolet radiation. The SnO2-Pt cluster sensor structures have been prepared using rf sputtering. Combined effect of UV radiation exposure (λ = 365 nm) and presence of Pt catalyst clusters (10 nm thick) on SnO2 thin film sensor surface is seen to lead to an enhanced response (4.4 × 103) for the detection of LPG (200 ppm) at room temperature whereas in the absence of UV illumination a comparable response (∼5 × 103) could be obtained but only at an elevated temperature of 220 °C. The present study therefore investigates the effect of UV illumination on LPG sensing characteristics of SnO2 sensors loaded with Pt clusters of varying thickness values. Results indicate the possibility of utilizing the sensor structure with novel dispersal of Pt catalyst clusters on SnO2 film surface for efficient detection of LPG at room temperature under the illumination of UV radiations.  相似文献   

3.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

4.
SnO2 nanosheets with the thickness of 10 nm were successfully synthesized by a simple hydrothermal process at 180 °C for 12 h. The samples were characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The sensor performance of the as-prepared SnO2 nanosheets for ethanol and carbon monoxide was measured. The results indicate that the sensor exhibited high response, quick response-recovery kinetics, and good repeatability.  相似文献   

5.
SnO2 microwires, nanowires and rice-shaped nanoparticles were synthesized by a thermal evaporation method. The diameters of microwire and nanowire were 2 μm and 50-100 nm, respectively, with approximately the same length (∼20 μm). The size of nanoparticles was about 100 nm. It was confirmed that the as-synthesized products have SnO2 crystalline rutile structure. The sensing ability of SnO2 particle and wire-like structure configured as gas sensors was measured. A comparison between the particle and wire-like structure sensors revealed that the latter have numerous advantages in terms of reliability and high sensitivity. Although its high surface-to-volume ratio, the nanoparticle sensor exhibited the lowest sensitivity. The high surface-to-volume ratio and low density of grain boundaries is the best way to improve the sensitivity of SnO2 gas sensors, as in case of nanowire sensor which exhibited a dramatic improvement in sensitivity to NO2 gas.  相似文献   

6.
The conductance of several tin oxide gas sensitive layers was simultaneously measured in thermo-cyclic and isothermal operation mode at various concentrations of CO and propene in air, respectively. Different measurement conditions were set by the cycle time, the gas flow rate, the humidity and the thickness of the sensitive layer. The sensor response is expressed by the conductance-over-time profiles (CTPs), the gas sensitivity or by the sum of the CTP sampling points. The resultant sensitivities from the CTPs were found to be higher than those of the isothermal measurements. The CTPs considerably change with the kind of gas as well as with the variation of the measurement conditions. This is discussed for both types of target gases with respect to the temperature, the adsorbates assumed and the reaction kinetics in relation to the gas transport conditions in the porous gas sensitive layer.  相似文献   

7.
CuO/SnO2 heterostructures as well as SnO2(CuO) polycrystalline films have been studied for H2S sensing. Gas sensing properties of these materials have been compared in conditions: 25–300 ppm H2S in N2 at 100–250°C. A shorter response time of the heterostructures as compared to that of the SnO2(CuO) films has been found. It is suggested that the improvement of dynamic sensor properties of SnO2/CuO heterostructures is caused by the localization of electrical barrier between CuO and SnO2 layers.  相似文献   

8.
The CO sensing property of CuO-loaded SnO2-In2O3 sensor was investigated in a reducing atmosphere. The sensor response to CO for CuO/SnO2-In2O3 (8/2) was much higher than that for CuO/SnO2 in the range of 200-1000 ppm of CO concentration. Such a high sensor response of CuO/SnO2-In2O3 may originate from the high dispersion of CuO playing a role as sensing site.  相似文献   

9.
F.  Y.  A.  S. 《Sensors and actuators. B, Chemical》2008,130(2):625-629
In our earlier study, we reported that at 300 °C, a 2.0 wt.% CeO2-doped SnO2 sensor is highly selective to ethanol in the presence of CO and CH4 gases [F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4, Sens. Actuators B 108 (2005) 172–176]. In the present investigation, we report the influence of ambient air humidity on the ethanol selective SnO2 sensor doped with 2.0 wt.% CeO2. Maximum response to ethanol occurs at 300 °C which decreases with the relative humidity. The relative humidity was changed from 0 to 80% for different ambient air temperatures of 30, 40 and 50 °C and the response of the sensor was monitored in a 250–450 °C temperature range. As the relative humidity in 50 °C air increased from 0 to 30%, a 15% reduction in the maximum response to ethanol was observed. A further increase in the relative humidity no longer reduced the response significantly. The presence of humidity improved the sensor response to both CO and CH4 up to 350 °C after which the extent of improvement became smaller and at 450 °C was almost diminished. The sensor is shown to be quite selective to ethanol in the presence of humid air containing CO and CH4. The selectivity passes a maximum at 300 °C; however it declines at higher operating temperatures.  相似文献   

10.
The effect of CdO doping on microstructure, conductance and gas-sensing properties of SnO2-based sensors has been presented in this study. Precursor powders with Cd/Sn molar ratios ranging from 0 to 0.5 were prepared by chemical coprecipitation. X-ray diffraction (XRD) analysis indicates that the solid-state reaction in the CdO–SnO2 system occurs and -CdSnO3 with pervoskite structure is formed between 600 and 650°C. CdO doping suppresses SnO2 crystallite growth effectively which has been confirmed by means of XRD, transmission electron microscopy (TEM) and BET method. The 10 mol% Cd-doped SnO2-based sensor shows an excellent ethanol-sensing performance, such as high sensitivity (275 for 100 ppm C2H5OH), rapid response rate (12 s for 90% response time) and high selectivity over CO, H2 and i-C4H10. On the other hand, this sensor has good H2-sensing properties in the absence of ethanol vapor. The sensor operates at 300°C, the sensitivity to 1000 ppm H2 is up to 98, but only 16 and 7 for 1000 ppm CO and i-C4H10, respectively.  相似文献   

11.
Ordered mesoporous SnO2 and mesoporous Pd/SnO2 have been successfully synthesized via nanocasting method using the hexagonal mesoporous SBA-15 as template. Two different procedures, impregnation technique and direct synthesis, were utilized for the doping of Pd in the mesoporous SnO2. The results of small angle X-ray diffraction (SAXD), nitrogen adsorption–desorption and transmission electron microscopy (TEM) demonstrate that the SnO2 and Pd/SnO2 display ordered mesoporous structures and high surface areas. Wide angle X-ray diffraction (WAXD) and X-ray photoelectron spectroscopy (XPS) reveal tetragonal structure of SnO2 and the existence of Pd element. The sensing properties of mesoporous SnO2 and mesoporous Pd/SnO2 for H2 were detected. The sensor utilizing mesoporous Pd/SnO2 via direct synthesis method exhibits excellent response and recovery behavior and much higher sensitivity to H2, compared to those using mesoporous SnO2 and mesoporous Pd/SnO2 via impregnation technique. It is believed that its high gas sensing performance is derived from the large surface area, high activity and well dispersion of Pd additive, as well as high porosity, which lead to highly effective surface interaction between the target gas molecules and the surface active sites.  相似文献   

12.
Mesoporous SnO2 is obtained through a simple hydrothermal process by using tin chloride as a raw material, urea as a pore-forming agent and pH regulator. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) nitrogen adsorption–desorption measurements are employed to characterize the obtained mesoporous structures. The results show that the as synthesized material after calcination can be well indexed to tetragonal phase SnO2 with a mesoporous structure. The sensing properties of the sensor based on mesoporous SnO2 are investigated. The results reveal that the response to dilute Cl2 gas of the materials is very high and fast. The short recovery time mainly attributes to the bigger pore size of mesoporous SnO2. Finally, the reaction mechanism is proposed.  相似文献   

13.
This paper presents the ability of electrostatic sprayed tin oxide (SnO2) and tin oxide doped with copper oxide (1, 2, and 4 at.% Cu) films to detect different pollutant gases, i.e., H2S, SO2, and NO2. The influence of a copper oxide dopant on the SnO2 morphology is studied using scanning electron microscopy (SEM) technique, which reveals a small decrease in the porosity and particle size when the amount of dopant is increased. The sensing properties of the SnO2 films are greatly improved by doping, i.e., the Cu-doped SnO2 films have large response to low concentration (10 ppm) of H2S at low operating temperature (100 °C). Furthermore, no cross-sensitivity to 1 ppm NO2 and 20 ppm SO2 is observed. Among the studied films, the 1 at.% Cu-doped SnO2 layer is the most sensitive in the detection of all the studied gases.  相似文献   

14.
SnCl2 (solution) was spin coated on soda lime glass and Al2O3 substrate to obtain nano-particulate tin oxide film, directly by sintering at 550 °C for 40 minutes (min). The surface morphology and crystal structure of the tin oxide films were analyzed using atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of SnO2 nanostructure was determined from UV-vis and found to be ?3 nm. These films were tested for sensing H2 concentration of 0.1-1000 ppm at optimized operating temperature of 265 °C. The results showed that sensitivity (Rair/Rgas per ppm) goes on increasing with decreasing concentration of test gas, giving concentration dependent changes. Special studies carried out at low concentration levels (0.1-1 and 1-10 ppm) of H2, give high sensitivity (200 × 10−3/ppm) for lowest concentration (0.1-1 ppm) of H2. The selectivity for H2 against relative humidity (RH), CO2, CO and LPG gases is also good. The sensor, at operating temperature of 200 °C, is showing nearly zero response to 300 ppm of H2, and offering response to acetone vapour of 11 ppm. Selectivity for acetone against RH% and CO2 was also studied. These sensors can be used as H2 sensor at an operating temperature of 265 °C, and as an acetone sensor at the operating temperature of 200 °C.  相似文献   

15.
We have investigated three ways of impregnating PdO on an SnO2 gas sensor to achieve a simple and reliable sensor-fabrication process. These impregnating processes are: (1) coprecipitation of SnO2 and Pd compounds in the solution; (2) addition of PdCl2 to SnO2 gel, followed by precipitation; and (3) infiltration of PdCl2 into calcined SnO2 powder. Processes (1) and (2) introduce Pd into SnO2 particles before particle growth is completed. The phase and microstructures of particles have been analysed by X-ray diffraction, scanning and transmission electron microscopes, and an energy-dispering X-ray spectroscope. The presence of Pd in the process of SnO2 precipitation restrains the growth of SnO2 particles and enhances a uniform distribution of fine PdO powder on the SnO2 grains. SnO2 gas sensors have been fabricated and tested for response to CH4, C2H6 and CO. Processes (1) and (2) show many possibilities of improving SnO2 gas-sensor sensitivity with a simplified fabrication process.  相似文献   

16.
M.  J.  A.  A.  J.R.  J.   《Sensors and actuators. B, Chemical》2008,133(2):435-441
Zeolite A (LTA)-coated micromachined sensors have been prepared and used in the sensing of individual gases (H2, CH4, C2H5OH, C3H8 and CO, in the 10–1000 ppm range) and gas mixtures. Unlike previous works with conventional sensors, a hydrothermal synthesis was not used to prepare a zeolite film. Instead, a zeolite coating was formed on top of the Pd/SnO2 surface by microdropping from a zeolite suspension. In spite of this, the response of the sensor with zeolite is significantly different from that of unmodified sensors, and essentially reproduces the performance of zeolite-coated conventional sensors. By avoiding the use of a hydrothermal synthesis the integrity of the sensor is better preserved, and the resulting non-continuous zeolite film has the added advantage of a strong reduction in response times.  相似文献   

17.
Gong  Xia  Liu  Zhou   《Sensors and actuators. B, Chemical》2008,134(1):57-61
Sol–gel dip coating technique was employed to prepare Cu-doped SnO2 thin films, which were able to detect H2S gas at room temperature with high sensitivity and revealed fast response characteristics. The highest sensor response (the ratio of resistance in air versus in H2S) was 3648 under H2S concentration of 68.5 ppm at room temperature. Recoverability of the thin films appeared when the temperature raised to 50 °C. The films were analyzed by means of XRD and the dried gel powder was studied by TG-DTA test. Influences of sintering temperature and doping level on the H2S response are discussed. The average grain size of the SnO2 was about 25 nm.  相似文献   

18.
19.
Nanostrucutred spinel ZnCo2O4 (∼26-30 nm) was synthesized by calcining the mixed precursor (consisting of cobalt hydroxyl carbonate and zinc hydroxyl carbonate) in air at 600 °C for 5 h. The mixed precursor was prepared through a low cost and simple co-precipitation/digestion method. The transformation of the mixed precursor into nanostructured spinel ZnCo2O4 upon calcinations was confirmed by X-ray diffraction (XRD) measurement, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). To demonstrate the potential applicability of ZnCo2O4 spinel in the fabrication of gas sensors, its LPG sensing characteristics were systematically investigated. The ZnCo2O4 spinel exhibited outstanding gas sensing characteristics such as, higher gas response (∼72-50 ppm LPG gas at 350 °C), response time (∼85-90 s), recovery time (∼75-80 s), excellent repeatability, good selectivity and relatively lower operating temperature (∼350 °C). The experimental results demonstrated that the nanostructured spinel ZnCo2O4 is a very promising material for the fabrication of LPG sensors with good sensing characteristics. Plausible LPG sensing mechanism is also discussed.  相似文献   

20.
The hierarchical unloaded and Pd-loaded SnO2 nanostructures, consisting of many aggregative nanorods were prepared by one-step hydrothermal method. A possible formation mechanism of these hierarchical structures was proposed. The butanone sensing properties of the sensors based on unloaded and hierarchical Pd-loaded SnO2 nanorods were investigated. The results indicate that the response of sensor using hierarchical Pd-loaded SnO2 nanorods to 1000 ppm butanone was 451 at 250 °C, which was about 10 times higher than that of sensor based on unloaded SnO2. Such enhanced gas sensing performances can be attributed to both the chemical and the electrical contribution of Pd loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号