共查询到19条相似文献,搜索用时 109 毫秒
1.
基于UKF的单站无源定位算法 总被引:10,自引:6,他引:10
将一种适用于非线性系统的UKF应用于单站无源定位,并结合具体应用背景,对通常的UKF作了适当的改进。与推广卡尔曼滤波器(EKF)相比,UKF能更好解决量测模型非线性问题,滤波性能更好,而且UKF的计算量与EKF是同阶的。 相似文献
2.
3.
针对单站无源定位可观测性弱,收敛速度慢,定位精度差等问题,在此采用综合利用相位差变化率、多普勒变化率对目标进行定位的方法。在此基础上,将一种新的非线性算法即平方根UKF算法应用单站无源定位中,计算机仿真表明在不同的参数测量精度条件下,新算法稳定性更高,收敛速度更快,定位精度更高。 相似文献
4.
5.
一种改进的单站无源定位与跟踪算法 总被引:8,自引:0,他引:8
无源定位与跟踪技术有着广阔的应用前景。对于机动干扰源单站无源定位与跟踪,直角坐标系下一阶卡尔曼滤波算法容易发散,二阶卡尔曼滤波算法运算量大。针对这一不足,本文提出了在极坐标下建立状态方程和观测方程的卡尔曼滤波进行干扰源单站无源定位与跟踪。仿真实验结果表明了该算法的有效性。 相似文献
6.
7.
8.
针对单站无源定位系统中观测方程非线性的特点,不能直接使用卡尔曼滤波估计,因而提出了一种适用于非线性的卡尔曼滤波估计改进算法——EKF算法;以方向角和方向角变化率为观测量,建立了EKF算法模型;仿真结果表明EKF算法适用于非线性系统,具有收敛速度快,定位精度高的特点。 相似文献
9.
10.
11.
12.
固定单站无源定位跟踪系统面临着可观测性弱、初始误差大等问题,寻找一种快速稳定的定位跟踪算法尤为重要.将距离参数化方法引入固定单站无源定位中,与不敏卡尔曼滤波(UKF)结合给出了基于距离参数化UKF(RPUKF)的固定单站无源定位算法;该算法根据观测站最大探测距离划分距离子区间,每个子区间单独采用UKF算法进行跟踪,将各自跟踪结果进行融合得到最终定位结果.仿真结果表明,在初始误差较大时RPUKF算法仍能实现稳定定位,与RPEKF算法相比在保证实时性的基础上明显改善了定位性能. 相似文献
13.
稳健的单站无源目标跟踪算法研究 总被引:3,自引:0,他引:3
无源定位与跟踪系统中面临着可观测性弱、初始误差大的问题,因此寻找一种稳健快速的跟踪算法显得尤为关键。本文在对现有跟踪算法进行分析和比较的基础上,提出一种IUKF(Improved Unscented Kalman Filter)算法,它通过对传统的UKF算法进行修正,改善了对状态滤波值和协方差的估计。与现有算法(如EKF,UKF)相比,新算法不仅适应能力强、稳定性高,而且收敛速度快、跟踪误差小,是一种稳健的无源目标跟踪算法,数值仿真和试验结果表明了算法的正确性和有效性。 相似文献
14.
基于UKF算法的惟方位单站无源跟踪 总被引:2,自引:0,他引:2
单站无源跟踪问题本质上是非线性估计问题,使用传统的EKF算法进行跟踪滤波,得到的结果误差较大,容易产生发散现象。本文在惟方位跟踪中应用UKF算法,仿真结果表明,与EKF相比,采用UKF算法跟踪精度较明显的提高,同时增强了滤波器的稳定性,有效地改善了跟踪性能。 相似文献
15.
16.
提出以相位差变化率为观测量,UKF逐步逼近目标位置的定位算法,有效解决了单站无源定位中收敛速度和定位精度问题。该算法以相位差变化率为观测量,消除了由于相位差中存在固定偏差对定位精度影响,提高了定位精度。而引进的UKF滤波算法则省去对观测方程的雅各比矩阵计算,简化滤波了运算,使定位过程更容易实现,从而提高定位滤波运算速度。 相似文献
17.
18.
19.
根据非合作式单站无源目标定位跟踪的模型,对标准的UKF算法进行了简化,提出了一种SUKF(simplified unscented kalman filter)算法,并将其应用于非合作式单站无源目标跟踪。仿真分析表明,与传统的EKF相比,该算法在滤波精度上有显著的提高;与标准UKF相比,该算法不仅保持了与UKF相同的滤波精度,而且其时间复杂度较UKF大为降低,更适合于实时性强的场合应用。 相似文献