首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
CO2跨临界循环制冷压缩机的研究进展   总被引:7,自引:0,他引:7  
对CO2压缩机的进展情况进行了介绍,并分析了已开发的各种类型的CO2压缩机的特点,总结了在压缩机研究中的关键技术,认为在未来CO2压缩机发展方向是开发无油压缩机、双级压缩机和膨胀压缩机。  相似文献   

2.
对带回热器和带膨胀机的CO2跨临界循环过程应用热力学进行了对比分析。结果表明,带回热器的CO2跨临界循环过程虽然也能够在一定程度上提高系统效率,但只要膨胀机的效率达到一定值,带膨胀机循环的系统性能将优于带回热器循环的系统性能。  相似文献   

3.
为提高跨临界CO2制冷循环的性能,提出了冲动式透平膨胀机(ITE)改进方案,该方案可以在回收膨胀功的同时实现双级压缩,对相应的制冷循环进行了热力学性能研究,获得了该循环最佳高压压力、最佳中间压力以及COP的变化规律.结果表明:当蒸发温度从-10℃变化到15℃,气体冷却器出口温度从30℃变化到50℃时,改进ITE制冷循环...  相似文献   

4.
由于臭氧层破坏和全球变暖等原因,CO_2作为新型制冷工质在跨临界CO_2循环中被广泛推广和应用。在循环中加入回热器可大幅度提升系统性能,本文针对跨临界CO_2循环中的回热器应用,从带回热器的跨临界CO_2系统性能、回热器结构、回热器在系统循环中的位置、回热器效率以及回热器入口制冷剂温度等几个方面对系统性能的具体影响进行深入探讨,介绍了国内外研究进展,对回热器的应用加以分析和展望。  相似文献   

5.
CO2跨临界循环膨胀压缩机的研究综述   总被引:1,自引:0,他引:1  
CO2是最有潜力的自然工质之一。综述了国内、外CO2膨胀压缩机的研究现状,在分析现有膨胀压缩机的技术特点的基础上,指出机械强度、摩擦和泄漏,润滑油的选择及其动态特性是CO2膨胀压缩机研究中存在的关键问题。在CO2膨胀压缩机的研究中,应该充分考虑CO2跨临界循环膨胀做功的特点,尽量减少其摩擦、泄漏及余隙容积损失,设计更为合理的进出口控制,促使CO2膨胀机的效率得到进一步提高。  相似文献   

6.
介绍了采用膨胀机的CO2跨临界循环的系统流程及典型工况,详细分析了膨胀中经历的亚稳态过程的成因和机理,指出了气化滞后对系统的危害,并对相变膨胀过程中的成核现象进行了热力学分析,在此基础上,结合CO2超临界膨胀过程的特点,阐明了气液相变介质中声速的确定方法,认为CO2超临界膨胀过程可近似按照经典热力学的准静态理论进行分析,并指出结论的理论依据。  相似文献   

7.
对7种CO2跨临界循环的性能进行了对比分析,结果表明,当膨胀机的效率达到60%时,TCDH循环的效率最高,是一种有发展前途的循环方式。对TCDH循环进行了结构配置优化分析,并与存在最佳高压压力时的循环进行了性能比较。可以发现,优化配置循环的COP低于最佳高压压力循环时的COP,当膨胀机的效率达到80%左右时,两者的COP才能够基本相当。所以在优化整个系统的结构设计时,应该权衡考虑各方面因素的影响。  相似文献   

8.
提出了一种全新的应用于热泵热水器的准二级跨临界 CO2热泵循环.对其分析研究表明该循环可以有效降低压缩机的排气温度,提高热泵热水器的制热效率.这种热泵热水器尤其适用于寒冷地区.  相似文献   

9.
《流体机械》2015,(8):73-77
对带中间冷却器的双级压缩制冷(TCEI)循环和带闪发器的双级压缩制冷(TCFI)循环进行了热力学分析与比较。结果表明:TCFI循环的最佳中间压力和最佳排气压力低于TCEI循环。在常规空调工况下,TCFI循环的COP高于TCEI循环。在蒸发温度从-10℃变化到10℃时,TCFI循环和TCEI循环的COP相对基本循环平均提高幅度分别为32.3%和18.7%。  相似文献   

10.
CO2跨临界制冷循环存在最佳高压压力,对应着最大COP。但是,膨胀机循环的最佳高压压力与节流阀循环的最佳高压压力不同。CO2膨胀机循环的最佳高压压力主要受压缩机效率、膨胀机效率、气体冷却器出口温度以及蒸发温度等参数的影响。当压缩机和膨胀机的效率一定时,CO2节流阀循环的最佳高压压力比膨胀机循环的高。为了计算方便,对膨胀机循环的最佳高压压力进行了计算和数据回归,并给出了计算关联式。  相似文献   

11.
本文以R134a、R290和CO2制冷剂为研究对象,分别对三种单、双级循环的性能进行对比。结果表明,随蒸发温度增加、压缩机效率升高和冷凝器出口温度降低,所有循环性能均提高,单级CO2循环存在最优排气压力;用膨胀机代替节流阀可以显著提高CO2跨临界循环COP;低压级压缩机的效率比高压级压缩机对系统性能影响明显。双级循环中,CO2循环最优中间压力远高于其它两种循环。本研究为高效、节能的空调和热泵产品开发提供基础资料。  相似文献   

12.
提出了一种CO2双级压缩制冷热泵循环,它能够实现冷热量的同时独立调节;并通过实际案例,理论分析了不同制冷剂质量流量系数、不同环境温度、热水温度以及高压压缩机排气压力下,新循环的性能,考察了特征温度和最佳排气压力的影响因素。  相似文献   

13.
通过用Yong分析方法对CO2跨临界制冷循环带节流阀和带膨胀机系统进行分析,发现节流阀的Yong损失较大,用膨胀机代替节流阀后,可使这部分损失降低,提高系统Yong效率。在带膨胀机的系统中,主要Yong损失发生在气体冷却器、压缩机和膨胀机,其中高压侧压力、气体冷却器出口温度以及蒸发温度对各部件的Yong损失和Yong效率都有不同程度的影响,在优化系统设计时应综合考虑这些参数。用Yong分析方法对系统性能进行评价,可为系统的改进提供理论依据。  相似文献   

14.
通过用(火用)分析方法对CO2跨临界制冷循环带节流阀和带膨胀机系统进行分析,发现节流阀的(火用)损失较大,用膨胀机代替节流阀后,可使这部分损失降低,提高系统(火用)效率.在带膨胀机的系统中,主要(火用)损失发生在气体冷却器、压缩机和膨胀机,其中高压侧压力、气体冷却器出口温度以及蒸发温度对各部件的()损失和(火用)效率都有不同程度的影响,在优化系统设计时应综合考虑这些参数.用(火用)分析方法对系统性能进行评价,可为系统的改进提供理论依据.  相似文献   

15.
《流体机械》2016,(11):78-83
前期通过搭建试验台,分析了二氧化碳跨临界循环中毛细管的节流特性,并运用无量纲分析法计算出了毛细管质量流量无量纲试验关联式,经可靠性分析发现该关联式优于diogo的关联式。若超出考虑的范围时,该关联式模型可能产生较大的误差。由此,利用微元分割法,设计VB程序对毛细管长度和流量进行数值计算,将计算结果与前期试验测试结果和文献值做比较。在流量计算方面:95%的计算值与前期试验值的偏差在10%以内,与文献试验值的偏差全部在10%以内。在长度计算方面,90%的计算值与前期试验值的偏差在15%以内,75%的长度计算值与文献试验值的偏差在15%以内;在偏差分布方面:流量计算值与前期试验值和文献试验值,均有95%以上的流量计算值与试验值的偏差在10%以内。最后利用该计算程序,在标准工况下对毛细管尺寸进行数值计算,绘制成毛细管选型图。  相似文献   

16.
为了提高跨临界CO2制冷系统的性能,搭建了跨临界CO2制冷系统试验台,对带有回热器(IHX)和不带回热器的两种跨临界CO2制冷系统进行了研究。研究结果表明:在某一蒸发温度下,当冷却水出口温度为55℃的时候,系统的性能系数随着高压侧压力的升高呈现出先升高后降低的趋势,存在一个最大值;回热器可以提高系统的性能,带回热器的制冷系统的性能系数要比不带回热器的制冷系统的性能系数高约6%~10.5%。  相似文献   

17.
介绍了一种新型商用跨临界CO2循环压缩机,并对此压缩机的关键部件,如壳体和连杆的设计及其应力分布进行分析,同时对压缩机内的油路进行设计,保证压缩机内油压平衡.在自行设计的跨临界CO2压缩机性能测试试验台对跨临界CO2压缩机及其热泵系统进行了系列实验研究,根据实验数据拟合出压缩机的等熵效率和容积效率公式.研究结果表明,在吸气压力为4.0 MPa,气冷器排气温度为25℃工况时,压缩机制热量在58~65 kW之间,制冷量在49~52 kW之间.跨临界CO2热泵系统在按照"一次加热"方式进行实验时,名义工况下出水温度分别为55℃和85℃时,热泵系统制热系数COPh分别为3.46和2.82.系统性能系数随着气体冷却器出水温度的升高而降低,但却随着蒸发器进水温度的升高而升高.冷却水进水温度越高,热泵系统效率越低,因此热泵热水器系统更适于"一次加热"供水系统.  相似文献   

18.
为了提高复叠式制冷系统的性能,有必要对不同的复叠式制冷循环进行对比分析。本文建立了2种分别采用R290/CO_2与R404A/CO_2工质的复叠式制冷循环的计算模型,并进行理论模拟计算与对比分析。结果表明,R290/CO_2复叠式制冷循环的COP比R404A/CO_2循环高;而且2种制冷循环中,都存在最佳低温循环冷凝温度,使得系统COP取得最大值。应尽量增大蒸发温度、减小冷凝温度以及降低冷凝蒸发器传热温差,这也有利于循环的安全运行。总之,R290/CO_2复叠式制冷循环的综合性能更优,在环境保护、节约能源方面具有较好的发展前景。  相似文献   

19.
跨临界CO2系统性能不仅受到排气压力的影响,而且对热源热汇温度的变化也十分敏感。介绍了具有双节流阀装置且带有平衡储液器的跨临界CO2制冷热泵试验台,并改变热源和热汇温度条件对系统进行了多工况对比性试验研究。结果表明:当热汇温度15℃一定,热源从15℃上升到25℃时系统制热COPH平均每5℃上升4.4%左右,反之热源温度25℃一定,热汇从15℃上升到25℃,系统制冷COP平均每5℃下降6.8%左右。且热源温度对冷冻水出水温度影响较大,而热汇温度对其影响较小,无论是热源或热汇温度平均每改变5℃对冷却水出口温度的影响范围在0.7℃到1.9℃左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号