首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of an operations evaluation system for sinking EDM   总被引:1,自引:0,他引:1  
B. Lauwers 《CIRP Annals》2010,59(1):223-226
This paper describes the development and validation of an operations evaluation system for sinking EDM operations. Based on a given workpiece geometry (e.g. mould), regions to be EDM’ed are automatically indentified. For a given electrode configuration, consisting of one or more regions, EDM machining times are calculated, making a proper process planning possible. The EDM time calculation is based on reference values for machining times which are then corrected for changes in the electrode geometry and generator settings. The developed system has been validated, proving a better and more accurate machining time estimation.  相似文献   

2.
In order to improve the performance of machines, there is a growing need to develop a highly stable servo control system for electrical discharge machining (EDM). With the perpetual push towards the untended EDM operation, an adaptive control system is and will continue to be a primary option. In this paper, a new EDM adaptive control system which directly and automatically regulates tool-down-time has been developed. Based on the real-time-estimated parameters of the EDM process model, by using minimum-variance control strategy, the process controller, a self-tuning regulator, was designed to control the machining process so that the gap states follow the specified gap state. With a properly selected specified gap states, this adaptive system improves the machining rate by, approximately, 100% and in the meantime achieves a more robust and stable machining than the normal machining without adaptive control. This adaptive control system helps to gain the expected goal of an optimal machining performance.  相似文献   

3.
The paper presents a simple approach for optimizing high-speed electrical-discharge machining (EDM). The approach begins with designing the ideal function of an EDM system coupled with Taguchi methods for process optimization. It has been proposed that the ideal function has a linear relationship between the input signal (intended dimension) and the output response (product dimension). This model seeks to develop a robust machining process enabling high precision and accuracy of machining a product.In this study, a two-step optimization strategy has been applied. The first step is to reduce the functional variability of the EDM system to enhance process robustness. The second step is to increase the machining accuracy by adjusting the slope of the best-fit line between the input signals and the output responses. Experimental results have shown that the use of the proposed model is simple, effective, and efficient in the development of robust and high-quality EDM machining processes.  相似文献   

4.
李铠月  张云鹏  杨光美  闫妍 《电加工》2013,(6):28-31,35
针对SiCp/Al的加工,提出一种超声振动磨削放电复合加工的方法.从加工效率、加工稳定性及表面质量等方面与电火花加工进行了对比试验研究。分析了两种加工方法的脉冲宽度和峰值电流对加工速度和表面粗糙度的影响,结果表明:电火花加工的表面粗糙度平均值为尺04.5μm,超声振动磨削放电复合加工的表面粗糙度平均值为Ra2μm:超声振动磨削放电复合加工的稳定性比电火花加工好,但加工速度较低。通过扫描电镜对两种加工方法下零件表面形貌和重熔层进行了观测,对试件表面进行了X射线衍射分析,表明采用超声振动磨削放电复合加工SiCp/Al复合材料可获得较好的表面质量。  相似文献   

5.
State of the art electrical discharge machining (EDM)   总被引:2,自引:0,他引:2  
Electrical discharge machining (EDM) is a well-established machining option for manufacturing geometrically complex or hard material parts that are extremely difficult-to-machine by conventional machining processes. The non-contact machining technique has been continuously evolving from a mere tool and die making process to a micro-scale application machining alternative attracting a significant amount of research interests.In recent years, EDM researchers have explored a number of ways to improve the sparking efficiency including some unique experimental concepts that depart from the EDM traditional sparking phenomenon. Despite a range of different approaches, this new research shares the same objectives of achieving more efficient metal removal coupled with a reduction in tool wear and improved surface quality.This paper reviews the research work carried out from the inception to the development of die-sinking EDM within the past decade. It reports on the EDM research relating to improving performance measures, optimising the process variables, monitoring and control the sparking process, simplifying the electrode design and manufacture. A range of EDM applications are highlighted together with the development of hybrid machining processes. The final part of the paper discusses these developments and outlines the trends for future EDM research.  相似文献   

6.
Improvement of Dry EDM Characteristics Using Piezoelectric Actuator   总被引:1,自引:0,他引:1  
This paper describes improvement of the machining characteristics of dry electrical discharge machining (dry EDM) by controlling the discharge gap distance using a piezoelectric actuator. Dry EDM is a new process characterized by small tool electrode wear, negligible damage generated on the machined surface, and significantly high material removal rate especially when oxygen gas is used. However, the narrow discharge gap length compared with conventional EDM using oil as the dielectric working fluid results in frequent occurrence of short circuiting which lowers material removal rate. A piezoelectric actuator with high frequency response was thus introduced to help control gap length of the EDM machine. To elucidate the effects of the piezoelectric actuator, an EDM performance simulator was newly developed to evaluate the machining stability and material removal rate of dry EDM.  相似文献   

7.
某航空飞行器的尾斜轴有一种弹簧,其两端面形位公差要求高。通过研究弹簧的特性及加工性能、电火花加工技术原理,结合电火花加工机床结构和功能特点,运用数控技术,探索采用电火花加工技术加工弹簧高精度端面,提出实施方案、采取的措施、解决问题的途径。应用结果表明:电火花加工方法可有效解决弹簧端面加工过程中的变形问题,能稳定可靠地保证弹簧端面高精度技术要求。目前此方法已成功运用在多种高精度端面弹簧的加工工艺上,完全满足用户需求,效果理想,具有重要的推广应用价值。  相似文献   

8.
This study explores the feasibility of removing the recast layer (RCL) using etching and mechanical grinding for Ni-based superalloy materials by means of electrical discharge machining (EDM). The EDM process is widely used for machining hard metals and performing specific tasks that cannot be achieved using conventional techniques. The sparks produced during the EDM process melt the metal's surface, which then undergo ultra rapid quenching. A layer forms on the workpiece surface defined as a recast layer after solidification. Molds and dies desire to remove the RCL even though it is hard and has good matrix adherence.This experiment is divided into three stages. The first stage acquires a thick recast layer by using EDM with a larger discharging energy. A thick recast layer is essential for verification of the EDM technique for observing the recast process. Thus, this work applies the Taguchi L18 analytical method to acquire the thick recast layer. The second stage optimizes the recast layer removal technique. Therefore, the thick recast layer is intentionally made in the first stage. This work determines the second stage setting using Taguchi's recommendation. Thus, the L9 orthogonal array sets up the etching and mechanical grinding parameters and observes the recast layer removal quantity analysis. Finally, an experiment studies the surface characteristics of Ni-based superalloys, such as composition and micro-hardness after removing the recast layer.  相似文献   

9.
This paper investigates the manufacturability of B4C, SiC, Si3N4-TiN by milling EDM and the performance of it has been compared to conventional sinking EDM. It is shown that due to the good flushing conditions, milling EDM performs well, even for the machining of ceramic materials with a rather low electrical conductivity (B4C, SiC). Because the used milling EDM technique removes material in a layer by layer fashion (2D-machining), a new strategy for the machining of complex 3D-shapes in ceramic material has been developed. It consists of a milling EDM pre-machining step, followed by one or more finishing sinking EDM steps. The developed strategy has been validated on an industrial example and compared to a pure sinking EDM strategy. Time reductions of more than 50% were obtained.  相似文献   

10.
Tool path generation for 4-axis contour EDM rough machining   总被引:1,自引:0,他引:1  
Contour or CNC EDM machining of free-form surfaces requires tool paths that are different from those used in mechanical milling although in geometry both processes are described by the similar model of intersection between the rotating tool and the workpiece. In this paper, special requirements on tool paths demanded by contour EDM machining are studied and a two-phase tool path generation method for 4-axis contour EDM rough milling with a cylindrical electrode is developed. In the first phase of the method, initial tool paths for virtual 3-axis milling are generated in a commercial CAD/CAM system—Unigraphics, which provides users with plenty of options in choosing suitable tool path patterns. From these tool paths, cutter contact (CC) points between electrode and workpiece are reversely calculated. In the second phase, considering the special requirements of EDM machining, which include discharging gap compensation, electrode wear compensation, DC arcing prevention, etc., the electrode is adjusted to an optimized interference-free orientation by rotating it around the CC points obtained in the previous phase. This new orientation together with the reference point of electrode is output as new tool path. The whole algorithm has been integrated into Unigraphics, machining simulations and tests have been conducted for 4-axis contour EDM rough machining.  相似文献   

11.
The electrical discharge machining (EDM) process is, by far, the most popular amongst the non-conventional machining processes. The technology is optimum for accurate machining of complicated shapes in hard materials, required in the modern industry. However, although a lot of EDM machines are widely applied for many years, fundamental knowledge of the process is still limited. The complex nature of the process involves simultaneous interaction of thermal, plasma temperature and electromagnetism factors, which makes the machining process modeling very difficult. In this paper, based on the analysis of the electric discharge machining (EDM) process, a plate capacitor model is constructed to describe the discharging process in a pulse time. The whole EDM process is divided into four stages, successively as interelectrode electric-field establishment, electric discharge channel formation, stable EDM and deionization, the interaction of each stage and the distribution function of EDM energy are deduced using the field electron emission theory. For the purpose of analyzing the effect of the single factor, a set of machining through-hole experiments were carried out and investigated. The study shows that critical electric-field intensity and the effective discharging time rate play major roles on the improvement of machining efficiency; the model can explain the differences of machining efficiency using different materials of tool pole and different EDM parameters; and the theoretical results are concordant with the experimental data well.  相似文献   

12.
王匀  许桢英 《机床与液压》2006,(6):37-38,40
工程陶瓷材料硬脆、导电率低,难以获得高效精密的电加工效果.本文针对工程陶瓷电火花加工特点,在分析国内外工程陶瓷电火花加工技术的基础上,提出了基于遗传算法的工程陶瓷电火花加工方法.该方法结合遗传算法、神经网络及模糊控制理论构造了多环式自适应控制系统,在线对加工过程进行断丝预防、加工工艺自适应和加工参数自适应监测与控制,从而为难加工材料实现高效精密的电火花加工提供理论与技术指导.  相似文献   

13.
Turning by electrical discharge machining (EDM turning) is an effective method to machine hard-to-cut materials. Generally, a wire-EDM is utilized in EDM turning because it is not concerned with electrode wear. However, wire-EDM turning has a slow machining speed due to its small machining area, and the wire may break due to overheating electrodes. For these reasons, its machining speed must be limited. In this study, a strip-EDM was created in an effort to overcome the problems in the EDM-turning process. This machining method used a conductive strip as an electrode. The strip was fed continuously, like a wire-EDM; therefore electrode wear was not a concern. One advantage of the strip-EDM was that it increased the material removal rate because of its large machining area and non-breaking electrode. In the experiments, machining characteristics were investigated according to machining conditions, and practical machining was carried out via fabrication of complex shapes on a shaft workpiece.  相似文献   

14.
In this paper a new approach for the optimization of the electrical discharge machining (EDM) process with multiple performance characteristics based on the orthogonal array with the grey relational analysis has been studied. A grey relational grade obtained from the grey relational analysis is used to solve the EDM process with the multiple performance characteristics. Optimal machining parameters can then be determined by the grey relational grade as the performance index. In this study, the machining parameters, namely workpiece polarity, pulse on time, duty factor, open discharge voltage, discharge current, and dielectric fluid are optimized with considerations of multiple performance characteristics including material removal rate, surface roughness, and electrode wear ratio. Experimental results have shown that machining performance in the EDM process can be improved effectively through this approach.  相似文献   

15.
基于超前两步预测自适应控制系统,可提高电火花加工钛合金的稳定性和加工效率。首先进行的传统开环正负极性对比实验表明,钛合金正极性加工的加工能力优于负极性加工。然后进行的正极性开环与超前两步预测自适应控制对比实验表明,自适应闭环控制指导下的电火花加工钛合金显著提升了加工稳定性和加工效率,降低了拉弧率,且自适应控制系统能充分发挥电火花加工的潜能,解决了困扰钛合金加工领域几十年的棘手问题。  相似文献   

16.
Near dry electrical discharge machining   总被引:4,自引:0,他引:4  
This study investigates the near dry electrical discharge machining (EDM) process. Near dry EDM uses liquid–gas mixture as the two phase dielectric fluid and has the benefit to tailor the concentration of liquid and properties of dielectric medium to meet desired performance targets. A dispenser for minimum quantity lubrication (MQL) is utilized to supply a minute amount of liquid droplets at a controlled rate to the gap between the workpiece and electrode. Wire EDM cutting and EDM drilling are investigated under the wet, dry, and near dry conditions. The mixture of water and air is the dielectric fluid used for near dry EDM in this study. Near dry EDM shows advantages over the dry EDM in higher material removal rate (MRR), sharper cutting edge, and less debris deposition. Compared to wet EDM, near dry EDM has higher material removal rate at low discharge energy and generates a smaller gap distance. However, near dry EDM places a higher thermal load on the electrode, which leads to wire breakage in wire EDM and increases electrode wear in EDM drilling. A mathematical model, assuming that the gap distance consists of the discharge distance and material removal depth, was developed to quantitatively correlate the water–air mixture's dielectric strength and viscosity to the gap distance.  相似文献   

17.
The study investigated the feasibility of modifying the surface of Al–Zn–Mg alloy by a combined process of electric discharge machining (EDM) with ball burnish machining (BBM). A novel process that integrates EDM and BBM is also developed to conduct experiments on an electric discharge machine. Machining parameters of the combined process, including machining polarity, peak current, power supply voltage, and the protruding of ZrO2, are chosen to determine their effects on material removal rate, surface roughness and the improvement ratio of surface roughness. In addition, the extent to which the combined process affects surface modification is also evaluated by microhardness and corrosion resistance tests. Experimental results indicate that the combined process of EDM with BBM can effectively improve the surface roughness to obtain a fine-finishing and flat surface. The micropores and cracks caused from EDM are eliminated during the process as well. Furthermore, such a process can reinforce and increase the corrosion resistance of the machined surface after machining.  相似文献   

18.
A review on current research trends in electrical discharge machining (EDM)   总被引:2,自引:1,他引:2  
Electrical discharge machining (EDM) is one of the earliest non-traditional machining processes. EDM process is based on thermoelectric energy between the work piece and an electrode. A pulse discharge occurs in a small gap between the work piece and the electrode and removes the unwanted material from the parent metal through melting and vaporising. The electrode and the work piece must have electrical conductivity in order to generate the spark. There are various types of products which can be produced using EDM such as dies and moulds. Parts of aerospace, automotive industry and surgical components can be finished by EDM. This paper reviews the research trends in EDM on ultrasonic vibration, dry EDM machining, EDM with powder additives, EDM in water and modeling technique in predicting EDM performances.  相似文献   

19.
Being a difficult-to-cut material, titanium alloy suffers poor machinability for most cutting process, let alone the drilling of small and deep holes using traditional machining methods. Although electric discharge machining (EDM) is suitable to handle titanium alloys, it is not ideal for small and deep holes due to titanium alloys’ low heating conductivity and high tenacity. This paper introduces ultrasonic vibration into micro-EDM and analyzes the effect of ultrasonic vibration on the EDM process. A four-axis EDM machine tool which combines ultrasonic and micro-EDM has been developed. A wire electric discharge grinding (WEDG) unit which can fabricate a micro-electrode on-line, as well as a measuring unit, is set up on this equipment. With a cylindrical tool electrode, made of hard carbide, which has high stiffness, a single-side notch was made along the electrode. Ultrasonic vibration is then introduced into the micro-EDM. Experiments have been carried out and results have shown that holes with a diameter of less than Ø0.2 mm and a depth/diameter ratio of more than 15 can be drilled steadily using this equipment and technology.  相似文献   

20.
Electric discharge machining (EDM) has been proven as an alternate process for machining complex and intricate shapes from the conductive ceramic composites. The performance and reliability of electrical discharge machined ceramic composite components are influenced by strength degradation due to EDM-induced damage. The success of electric discharge machined components in real applications relies on the understanding of material removal mechanisms and the relationship between the EDM parameters and formation of surface and subsurface damages. This paper presents a detailed investigation of machining characteristics, surface integrity and material removal mechanisms of advanced ceramic composite Al2O3–SiCw–TiC with EDM. The surface and subsurface damages have also been assessed and characterized using scanning electron microscopy (SEM). The results provide valuable insight into the dependence of damage and the mechanisms of material removal on EDM conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号