共查询到20条相似文献,搜索用时 15 毫秒
1.
近几十年来,国内外对高强铝合金的热处理工艺及其力学性能等进行了广泛的研究,获得令人满意的综合性能。前者强度虽高,但抗应力腐蚀性能较差;而后者则是以较大幅度地牺牲合金强度为代价来改善其应力腐蚀敏感性的。本研究选用7175铝合金,对其在140~180℃下的长期时效特征,常规力学性能,性能预测与工艺优化,应力腐蚀行为,氢对合金机械性能的影响及其微观结构的变化等进行了系统的试验研究;同时从理论上详细地研究了晶界偏析对晶界强度的影响。主要结果如下: ①首次提出将遗传、进化算法与人工神经网络相结合来研究材料工艺优化问题,为今后材料工艺优化研究探索了一条崭新的途径。②首次研究了高强铝合金在长期时效过程中的应力 腐蚀行为及氢对合金力学性能的影响,并提出了氢致高强铝合金韧脆断裂转变的新观点。为改善高强铝合金的抗SCC性能,指导热处理工艺的制定指出了新的研究方向。③首次提出了用自由电子理论研究晶偏析与晶间脆性的新方法。④首次提出了三元合金晶界偏析与沿晶断裂模型,运用该模型与准化学理论相结合系统地研究了高强铝合金的氢致断裂问题;并首次从理论上证实了Viswanadham关于Mg-H相互作用的预言。⑤深入揭示了高强铝合金的氢致断裂机理,这对今后抗氢铝合金的设计具有十分重要的理论 相似文献
2.
3.
本文研究了7050铝合金的应力腐蚀开裂。用离子探针证实氢在裂尖区富集,通过俄歇能谱分析研究了 Zn,Mg 元素在晶界的偏析。应力腐蚀开裂包括三个过程:(1)在欠时效和峰时效的合金中,氢加速进入晶界;(2)氢和 Zn(或Mg)在位错芯部发生电荷转移产生 H-;(3)由于H-在晶界的尺寸失配导致晶界开裂。测定了应力腐蚀开裂激活能,表明氢在晶界中通过空位扩散是控制应力腐蚀开裂的主要过程。 相似文献
4.
某航空机轮用喷射成形7055超高强铝合金锻件在静压试验中提前开裂。结合锻件的热加工锻造工艺、热处理工艺和静压试验条件,采用宏观观察、电导率测试、力学性能测试、低倍组织检验、金相检验、断口及有限元模拟分析等方法,分析了锻件开裂的原因。结果表明:该锻件在静压试验中开裂的失效模式属于一次性的过载断裂;由于其定位孔较深、根部直角应力集中,在螺栓定位孔径根部萌生裂纹,尖角处机轮锻件流线对裂纹的形成与扩展有促进作用。减小定位孔深度、增加孔径根部圆弧过渡处圆角、优化热处理工艺可以有效地提升该锻件静压试验的失效强度,使其满足验收要求。 相似文献
5.
6.
7.
基于慢应变速率拉伸实验(SSRT),采用恒电流极化、电化学噪声(ECN)与电化学阻抗(EIS)等方法,研究7A04铝合金在3.5%(质量分数)NaCl水溶液中的应力腐蚀开裂(SCC)行为以及Ce~(3+)对其SCC的缓蚀作用,探讨Ce~(3+)对裂纹孕育与发展过程的抑制机理。结果表明:无论是阳极还是阴极极化,均会促进7A04的SCC倾向,前者增加了裂尖的阳极溶解,后者则加速了裂尖的氢脆效应。Ce~(3+)的加入能延缓7A04的SCC断裂时间,但其有效性仅限于裂纹的萌生阶段。由于Ce~(3+)能够抑制铝合金表面的亚稳态点蚀发育和长大,因而使裂纹的孕育时间显著延长,降低了SCC的敏感性。不过一旦裂纹进入扩展阶段或者试样表面有预裂纹,则由于Ce~(3+)很难迁移到裂纹尖端或在裂尖区难以成膜,不能对裂纹的生长起到有效抑制作用,因而无法降低7A04的SCC发展速率。SEM分析表明7A04铝合金光滑试样SCC主要源于亚稳态或稳态点蚀的诱导作用。 相似文献
8.
9.
目前有关X90管线钢抗H2S性能的研究报道较少.为此,采用NACE TM 0284-2003方法对X90和X80管线钢进行氢致开裂(HIC)试验以对比研究其抗HIC性能,论述了氢致开裂的机理,并分析了X90管线钢的微观组织和化学成分对氢致开裂的影响.结果表明:X90管线钢的抗HIC性能较X80管线钢差,X90钢的热影响区与焊缝区的抗HIC性能比母材好;X90钢易产生Mn的偏析,且C会加剧其偏析,同时Cr的碳化物析出使氢鼓泡易在此处产生,2种因素均导致X90钢的抗HIC性能降低;适当控制微观组织比例,降低C含量,在保证提高X90管线钢强度的同时,严格控制Mn和Cr的含量,可以提高其抗HIC性能. 相似文献
10.
本文采用三点弯曲试验对低合金高强钢氢致裂纹及氢致脆化的敏感性进行了研究,用脆化度I_COD=(δ_cr-δ_crH)/δ_cr作为氢致脆化的判据。高强钢三点弯曲试样的断口形态受应力强度因子K和氢量H的影响,随着K值增加和氢量减少,断口形态由I G→QC_(HE)→DR过渡。根据本研究工作的试验条件,用声发射(AE)捕捉启裂点和监视裂纹的扩展是可行的。 相似文献
11.
12.
《理化检验(物理分册)》2016,(4)
按照YB/T 4003-1997《连铸钢板坯低倍组织缺陷评级图》对连铸坯进行了宏观低倍检验,并利用OPA-100型原位分析仪对连铸坯偏析进行了定量检测,然后按照NACE 0284-2003《管道、压力容器抗氢致开裂钢性能评价的试验方法》对经热机械控制工艺(TMCP)轧制成的钢板取样进行氢致开裂(HIC)腐蚀试验。结果表明:连铸坯中心偏析是钢板发生HIC的主要原因,偏析元素主要有硫、磷、碳、锰等;通过合理的成分设计和工艺控制,实现了连铸坯偏析的良好控制,所生产的连铸坯可满足抗HIC管线钢工业生产需求。 相似文献
13.
为了研究氢气环境下双相不锈钢疲劳裂纹萌生和扩展的影响规律,建立氢气环境下双相不锈钢疲劳应变组织演化—氢致开裂之间的关联机制,在5 MPa氢气和5 MPa氮气2种环境中对2205双相不锈钢试样进行了慢应变速率拉伸和疲劳裂纹扩展速率试验。结果表明:在氢气环境下,2205双相不锈钢在慢应变速率拉伸过程中的氢脆敏感性不高,而在疲劳过程中氢脆现象显著,5 MPa氢气环境下2205双相不锈钢的疲劳裂纹扩展速率比氮气环境中的快18倍;氢气能够促进2205双向不锈钢疲劳裂纹尖端周围组织的局部塑性变形,并进一步导致氢致开裂。在氢气环境下2205双相不锈钢疲劳变形过程中,不同的相结构其氢致开裂机理也不同,铁素体相容易形成河流状花样断口形貌(解理断口),而奥氏体相断口形貌多呈现平行的滑移带特征,奥氏体相在铁素体相的解理开裂过程中对裂纹具有阻碍作用。 相似文献
14.
针对某段时期出现的X52管线钢产品经抗阶梯型破裂试验后,试样有明显阶梯裂纹,产品检验不合格的问题,对不合格批次的试样进行化学成分、炼钢工艺以及显微组织等方面的分析,分析了该抗硫化氢腐蚀X52管线钢氢致开裂的原因。结果表明:开裂批次试样的钙硫含量比值偏低,导致出现夹杂物偏聚和中心偏析,且夹杂物呈线状分布,是造成该管线钢产品抗氢致开裂试验开裂的主要原因。最后对X52管线钢的生产控制要点提出了相应建议,以提高其抗硫化氢腐蚀的能力。 相似文献
15.
以原子氢渗透速率测量传感器作为信号元件,80C31单片机作为中央处理单元,利用钢铁(A3钢和16Mn钢)在酸洗溶洗液中发生氢致腐蚀裂开危险性的临界条件为基本参数而编写了系统程序和专门设计了外国电路,研究并建立了钢铁在酸洗过程中发生氢致腐蚀开裂危险性的数据采集,存储处理,逻辑判断以及结果自动制表打印输出功能的微机系统。 相似文献
16.
17.
《理化检验(物理分册)》2017,(2)
采用宏观分析、化学成分分析、金相检验、断口分析、室温拉伸试验等方法对某卷高强钢板制管成型过程中发生开裂的原因进行了分析。结果表明:高强钢板中较多的非金属夹杂物和中心偏析引起的应力集中是导致其制管开裂的主要原因;此外,钢板宽度方向上的力学性能不均匀也促进了高强钢板的制管开裂。最后根据高强钢板开裂原因提出了改进措施。 相似文献
18.
以高强铝合金圆筒为研究对象,研究了其在恒温恒载条件下长期承载后的尺寸稳定性和力学性能稳定性.结果表明:该高强铝合金圆筒在40℃温度下承载0.78σ0~0.92σ0约2×104h以后,其圆度有不同程度的减小,其蠕胀速率与试验载荷之间成指数关系,其环向力学性能与试验前相比,没有显著性差异. 相似文献
19.
一直以来,硬质膜层被广泛地应用于改善金属基体表面性能,保护其不受恶劣环境的影响,以达到延长其服役寿命的目的。但是,研究发现硬质膜层的开裂会导致韧性金属基体的开裂,这将严重威胁到金属承载结构件的安全。因而,有必要了解、认识其规律,并揭示损伤机制,为制定相应的解决方案提供依据。综述了膜致韧性基体开裂的来源、机理以及相应的可行解决措施。脆性膜层与韧性基体的短程交互作用以及脆性膜层的开裂所提供的快速运动的裂纹是导致韧性基体低应变下脆性开裂的关键原因。降低硬质膜层开裂的可能性或裂纹在膜层中的运动速度以及减少膜与基体之间的不匹配,有助于减缓膜致韧性基体开裂这一现象的发生。 相似文献
20.
天然气输送管道氢致开裂问题日益突出,而API X52管线钢在气田模拟水溶液中氢渗透和氢致开裂的研究较少。模拟了饱和硫化氢某气田水溶液,采用电化学和恒载荷拉伸试验方法,测定了API X52管线钢在不同充氢电流密度下的氢扩散系数、可扩散氢浓度(ω0)及管线钢氢致开裂临界可扩散氢浓度(ωHIC)。结果表明:API X52管线钢可扩散氢浓度(ω0)与充氢电流密度呈线性关系,即ω0=0.99+0.07J;其恒载荷下开裂临界可扩散氢浓度的对数值(lnωHIC)随拉应力(σ)呈线性下降,即σ=475-450lnωHIC。 相似文献