首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
李萍  王丽红  司慧  王一青 《化工进展》2018,37(9):3379-3385
在酸性分子筛HZSM-5催化条件下,以玉米秸秆粉为原料,考察了反应温度对热解油品质的影响。在自制流化床热裂解装置上,选取了5种反应温度(450℃、500℃、550℃、600℃及650℃),进行催化热裂解实验,探究热解油含水率、pH和化学组分的变化规律。结果表明:在HZSM-5催化剂作用下,热解油含水率与pH随反应温度线性增加,酸性随着含水率的升高而减弱(pH增大);热解油中酸类、酚类、酯类及醇类相对含量比酮类、醛类及糖类受反应温度影响更加明显;在HZSM-5催化剂与物料质量比1:10,反应温度为500℃时,热解油品质较好,腐蚀性低、稳定性高,酚类物质种类丰富、相对含量高。研究结果为HZSM-5催化条件下反应温度调控、改善热解油品质提供了一定的科学依据,有利于热解油后续高值化、环保化利用。  相似文献   

2.
黄振东  王睿  于美青 《化工学报》2016,67(Z2):176-183
采用浸渍法,将KOH负载在新型载体氧化锆上,通过高温煅烧得到了固体碱催化剂。探讨了制备条件对催化剂催化酯交换反应活性的影响,获得了催化剂的最佳制备条件,以大豆油和甲醇为原料研究并优化了催化酯交换反应制备生物柴油的工艺条件。结果表明,固体碱催化剂KOH/ZrO2的最佳制备条件为:KOH负载量20%,煅烧温度600℃,煅烧时间2 h。固体碱催化剂催化酯交换反应的最优反应条件为:醇油比9:1,反应温度75℃,反应时间3 h,催化剂用量4.0%。各因素对产率影响的大小为:醇油摩尔比 > 反应温度 > 反应时间 > 催化剂用量。  相似文献   

3.
赤泥含有具有催化作用的元素,同时含有一定的孔,可用作催化剂。赤泥的强碱性导致催化剂表面烧结、酸性不足等问题。该研究采用柠檬酸交换钠及焙烧制备了脱碱赤泥催化剂,赤泥的脱碱率达到96%。表征发现脱碱赤泥结构更稳定,硅铝酸盐聚合度降低,Al、Fe、Ti等具有催化作用的元素含量增加、比表面积增加、中强酸酸性位点增多等。用于催化秸秆热解,产物生物油中醛类、酚类、呋喃类变化明显,其中2,3-二氢呋喃含量增加了15.9倍。脱碱赤泥对生物油的产率影响较小,不可冷凝气体、生物炭产率变化明显。推断与脱碱赤泥促进了脱羟和脱羰基反应、葡萄糖脱水重排,强化了脱甲基和脱甲氧基反应有关。  相似文献   

4.
刘江龙  郭焱  席艺慧 《化工进展》2020,39(2):776-789
含铜废水主要来自电镀、有色冶炼、有色金属矿山开采、染料生产等过程。因Cu(Ⅱ)具有高毒性和生物富集性,严重威胁生态环境和人类健康。利用浓盐酸、三氯化铁(FeCl3)、十六烷基三甲基溴化铵(CTAB)依次对拜耳法赤泥(RM)进行处理、改性,制备出了一种去除率高、吸附量大、吸附效果好的重金属离子吸附剂。通过SEM、TEM、XRD、BET、元素分析、FTIR、热重分析等手段对其进行表征,并探究溶液pH、吸附剂投加量以及吸附温度等条件对水溶液中Cu(Ⅱ)吸附效果的影响。结果表明:酸浸赤泥(RM-HCl)比表面积比RM增大20倍,经过FeCl3和CTAB改性后赤泥表面负载了大量羟基氧化铁(FeOOH)并且改善了吸附材料的表面性质,提高了吸附材料与Cu(Ⅱ)之间的亲和力和单层吸附能力。综合改性赤泥(FeCl3/CTAB/RM)对铜的吸附时间在100min达到平衡,其最佳吸附pH为6、最佳吸附剂投加量为2g/L、饱和吸附量为221mg/g。吸附过程较好地符合准二级动力学模型和Langmuir吸附等温模型,热力学数据说明该吸附是吸热、自发的过程。吸附机理主要是FeCl3/CTAB/RM表面的羟基(Si-OH、α-FeOOH和β-FeOOH)以及掺杂的氯原子和表面活性剂,通过物理吸附(微胶束、静电引力)和化学吸附(离子交换、氢键)有效地去除Cu(Ⅱ)离子。  相似文献   

5.
王博  郭庆杰 《化工进展》2018,37(7):2837-2845
以拜耳法赤泥为基体,采用浸渍法制备了CuO修饰的赤泥载氧体(Cu0.5RM1、Cu1RM1)。利用SEM-EDSmapping、XRD对其进行物化表征,并在高温流化床反应器及热重分析仪中考察了赤泥载氧体的废弃活性炭化学链燃烧特性。结果表明,浸渍法可准确制备定量CuO修饰的赤泥载氧体;相比于纯赤泥载氧体,CuO修饰的赤泥载氧体具有化学链燃烧载氧体与化学链氧解耦燃烧载氧体的双重特性,能够加快碳转化速率,有效提高出口气体中CO2浓度;Cu1RM1反应活性较高,875℃为其较优的反应温度,此时t95为28min,出口气体中CO2浓度为92.9%(体积分数),燃烧效率达93.0%。10次循环实验表明Cu1RM1载氧体具有相对稳定的循环反应特性。  相似文献   

6.
陈泳兴  魏琦峰  任秀莲 《化工学报》2017,68(9):3592-3599
使用丙胺溶液对裙带菜孢子叶残渣进行水热液化,分析了水热液化后生物油、水溶性物质和固体残渣的成分。在丙胺浓度1.5 mol·L-1、反应温度240℃、料液比1:10的条件下得到生物油的最大产率为39.81%(质量)。生物油通过GC-MS和FT-IR进行分析,结果表明成分包含醇类、烷类、酯类、酸类、酚类和酰胺类等,并存在C=C、C=O、O-H等化合键。水溶性物质通过HPLC和GC-MS进行分析,结果表明主要产物为酸类物质。固体残渣通过XRD进行分析,结果表明水热液化后纤维素的结晶度降低。最后对丙胺进行回收,在温度100℃条件下回收率达到92.56%。  相似文献   

7.
采用浸渍法,将KOH负载在新型载体氧化锆上,通过高温煅烧得到了固体碱催化剂。探讨了制备条件对催化剂催化酯交换反应活性的影响,获得了催化剂的最佳制备条件,以大豆油和甲醇为原料研究并优化了催化酯交换反应制备生物柴油的工艺条件。结果表明,固体碱催化剂KOH/ZrO_2的最佳制备条件为:KOH负载量20%,煅烧温度600℃,煅烧时间2h。固体碱催化剂催化酯交换反应的最优反应条件为:醇油比9∶1,反应温度75℃,反应时间3h,催化剂用量4.0%。各因素对产率影响的大小为:醇油摩尔比反应温度反应时间催化剂用量。  相似文献   

8.
纤维增强Si-C-O气凝胶隔热复合材料的制备与表征   总被引:4,自引:0,他引:4  
赵南  冯坚  姜勇刚  冯军宗 《硅酸盐学报》2012,40(10):1473-1477
以正硅酸乙酯为原料,通过二甲基二乙氧基硅烷引入碳元素,以乙醇为溶剂,盐酸和氨水为催化剂,莫来石纤维为增强相,采用溶胶–凝胶、超临界干燥和1 200℃高温裂解工艺制备Si-C-O气凝胶隔热复合材料,并对材料的结构和性能进行了分析和表征。结果显示:1 200℃裂解得到的Si-C-O气凝胶复合材料为黑色且加工成型性较好,纤维表观体积密度为0.15 g/cm3时,800℃和1 000℃热导率分别为0.031 9 W/(m K)和0.043 0W/(m K)。纤维表观体积密度增大(0.15~0.30 g/cm3),复合材料的拉伸和压缩强度增大,密度为0.25 g/cm3时,抗弯强度最大。1 200℃裂解得到的Si-C-O气凝胶的比表面积为217.7 m2/g,空气中1 000℃煅烧后,比表面积为208.6 m2/g。Si-C-O气凝胶复合材料在1 000℃空气中煅烧后没有出现收缩。  相似文献   

9.
煅烧高岭土的比表面积与吸油性能   总被引:2,自引:0,他引:2  
以水洗高岭土为原料,在600~1000℃,以50℃为间隔取点煅烧。通过场发射扫描电镜观察产品的微观形貌、X射线衍射仪分析产品的物相,并用BET物理吸附仪表征产品的比表面积和孔径分布,根据煅烧高岭土的微观形貌、物相组成、吸脱附等温线等,分析其比表面积与吸油性能的关系。结果表明:750℃的煅烧高岭土吸油值最高,为80.272g/100g,此时煅烧高岭土的比表面积最大,孔径分布集中于微孔和中孔,平均孔径最小。煅烧温度低于800℃时,煅烧高岭土的孔径分布较集中于微孔和中孔,比表面积较大,吸油值较高;煅烧温度升高至800℃以后,高岭土发生烧结导致微孔闭塞,孔径分布向中孔和大孔集中,比表面积减小,吸油值较低。因而煅烧高岭土的吸油性能与其比表面积和孔径分布密切相关,孔径分布越集中于微孔,比表面积越大,其吸油值越高。  相似文献   

10.
在室温离子液体介质中,采用溶胶-凝胶法以及微波干燥的方法制备了氯掺杂的光催化剂TiO2-N。在室温条件下,以甲基橙为模拟污染物,在微波超声波组合催化合成仪中,分别利用微波辐射(MW)、紫外光照(UV)和微波辐射一紫外光照(MW—UV)三种降解方式,主要考察了N掺杂量、微波干燥功率、微波干燥时间、煅烧温度和煅烧时间等因素对TiO2-N光催化活性的影响。结果表明,在离子液体用量为5.6mL、N掺杂量n(N)/n(Ti)=3:1、微波干燥功率210W、微波干燥时间20min、煅烧温度600℃、煅烧时间2h的条件下所制得的TiO2-N光催化剂具有较高的光催化活性;TiO2-N光催化剂在三种降解方式下对甲基橙的降解效果为:MW—UV〉UV〉MW,这表明微波与紫外光照有较好的协同作用,即微波一紫外光照具有强化TiO2-N催化剂降解甲基橙的效果。  相似文献   

11.
在流化床锅炉温度条件下研究了赤泥、电石渣等钙基工业废弃物煅烧后的固硫特性,并与石灰石比较,同时研究了吸收剂在反应过程中的物相变化、微观结构特性。结果表明,在相同反应条件下,随反应时间增加,赤泥的钙转化率高于电石渣和石灰石,石灰石的钙转化率最小。赤泥和电石渣的最佳固硫温度分别为850~900℃和950~1000℃。随SO2浓度增加,在相同反应时间内赤泥的钙转化率和硫化反应速率也相应增大。粒径对赤泥的固硫性能影响不大。赤泥和电石渣中钙的主要化合物分别为Ca2SiO4和Ca(OH)2。它们煅烧后孔径主要分布在5~20nm内,这正是最有利于固硫的孔径区域,石灰石煅烧后孔径主要分布于45~420nm。钙基废弃物具有优良的孔隙结构,因而它们在流化床锅炉温度条件下具有良好的固硫性能。  相似文献   

12.
This paper studies the effect of 5 wt% red mud particles addition to sol–gel films applied on AA2024-T3 aluminium alloy. The red mud powder was dried or calcined, previously to added to the sol–gel film, in order to analyzed the effect of the thermal activation. The RM particles were characterized using several techniques; x-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results confirm that the thermal treatment leads to several phase transformations which affect to gibbsite, Al(OH)3, boehmite, AlO(OH), and goethite, FeO(OH), species.  相似文献   

13.
以异丙醇铝为原料,用聚乙二醇(PEG1000)络合溶胶-凝胶法合成了Al2O3纳米晶,并采用差热-热重分析、X射线衍射、透射电子显微镜等对络合前驱体及粉体进行表征;探讨了PEG1000及煅烧温度对纳米Al2O3相结构、粒子尺寸、形貌及分散性的影响规律.结果表明:PEG1000增强了纳米Al2O3粒子的分散性.干凝胶在600~900℃煅烧后得到γ-Al2O3相;在600℃煅烧条件下,得到γ-Al2O3粒子形貌为针状结构,长度约为50~60nm.随着煅烧温度的升高,γ-Al2O3针状粒子长度逐渐减小,在750℃煅烧后,得到γ-Al2O3粒子长度为20~30nm;在900℃煅烧条件下,γ-Al2O3粒子形貌为颗粒状,平均粒径尺寸为10nm;当干凝胶在1 000℃煅烧后得到θ-Al2O3和α-Al2O3的混合相,所得粒子平均粒径尺寸为20 nm;当干凝胶在1 200℃煅烧后,得到的Al2O3全部转化α-Al2O3相,制得的纳米Al2O3粒子尺寸均一且分散性良好.  相似文献   

14.
The cementitious behavior of red mud derived from Bauxite-Calcination method was investigated in this research. Red mud were calcined in the interval 400–900 °C to enhance their pozzolanic activity and then characterized in depth through XRD, FTIR and 29Si MAS-NMR techniques with the aim to correlate phase transitions and structural features with the cementitious activity. The cementitious activity of calcined red mud was evaluated through testing the compressive strength of blended cement mortars. The results indicate that red mud calcined at 600 °C has good cementitious activity due to the formation of poorly-crystallized Ca2SiO4. The poorly-crystallized Ca2SiO4 is a metastable phase which will transform into highly-crystallized Ca2SiO4 with the increase of calcination temperature from 700 °C moving to 900 °C. It is the metastable phase that mainly contributes to the good cementitious activity of red mud. This paper points out another promising direction for the proper utilization of red mud.  相似文献   

15.
邢磊  杜培培  龙跃 《硅酸盐通报》2022,41(9):3162-3169
以熔分赤泥为研究对象,探究熔分赤泥熔渣纤维化过程中熔体性能的变化规律,采用炉渣熔点熔速测定仪研究熔分赤泥熔化过程及熔化温度,采用FactSage热力学软件模拟熔分赤泥熔渣冷却过程中矿物析出种类、含量及开始析晶温度,采用X射线衍射仪和场发射扫描电子显微镜研究熔分赤泥熔渣不同温度下矿物组成与显微形貌,采用熔体物性综合测定仪研究熔分赤泥熔渣降温过程中的黏度变化。结果表明,熔分赤泥的熔化温度为1 236 ℃,熔分赤泥熔渣冷却过程中,1 300 ℃开始析出晶体,首先析出晶相为镁铝尖晶石(MgAl2O4)。此外,综合分析熔分赤泥熔渣熔体性能,明确利用熔分赤泥熔渣纤维化制备无机纤维时的温度应高于1 433 ℃。  相似文献   

16.
生物质热解气分级冷凝对生物油特性的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
隋海清  李攀  王贤华  邹俊  李相鹏  陈汉平 《化工学报》2015,66(10):4138-4144
利用分级冷凝手段对成分复杂的生物质热解气在不同冷凝温度下的分离特性进行研究,将成分复杂的混合物依据自身露点的不同,通过控制冷凝温度,实现生物油的分组富集。对热解气在不同冷凝温度(300℃、100℃、0℃和-20℃)下生成的各级液体产物的物理特性和化学成分进行系统分析。生物质热解气经过分级冷凝处理后得到4组生物油样品,其中0℃时得到的生物油产率最大,超过液体总量的50%;其次是100℃时的冷凝产物,为分子量80~200的有机物,以杂酚类物质为主;300℃冷凝得到的产物为沥青类物质,不含水分,状似固体碳,没有流动性。分级冷凝能够很好地将水分和有机酸成分从生物油中分离出来,几乎所有的有机酸和超过80%的水分都富集在0℃和-20℃冷凝组分中。结合各组分GC-MS的分析结果,对乙酸、苯酚、愈创木酚和多环芳烃等生物油中典型有机组分的分布特性进行分析总结,得到各类物质在分级冷凝过程中的富集规律。  相似文献   

17.
通过热重-差热分析(TG-DTA)赤泥的相变温度,通过X射线衍射(XRD)、红外光谱(FT-IR)分析赤泥热活化前后矿物的组成变化和键能变化,并以活性指数来评定活化赤泥的反应活性,分析了热活化温度对赤泥反应活性的影响规律和作用机理。实验结果表明:热活化后赤泥中硅酸二钙的衍射峰明显,硅酸二钙增多,方解石分解转化成不稳定的高活性物质,Si—O键和Al—O键的结构稳定性降低;热活化温度低于700 ℃时,赤泥的活性指数随着活化温度的升高而增加,700 ℃时活化赤泥的活性指数比原生赤泥提高19.1%,而热活化温度升高至800 ℃时,活化赤泥的活性指数急剧下降。  相似文献   

18.
采用热分析法研究了山东铝业公司赤泥和石灰石固硫反应过程,利用等效粒子模型计算分析了其固硫反应动力学参数,并在此基础上利用压汞仪、SEM分析了赤泥煅烧前后的微观结构,探讨了赤泥固硫机理,为利用氧化铝生产中排放的大量赤泥代替石灰石用作燃煤固硫剂提供了理论依据.结果表明,赤泥的钙利用率是相同条件下石灰石的2~3倍,赤泥煅烧后较石灰石具有更多的中孔和较大的比表面积,可提高化学反应速度和反应深度;另外,赤泥中较多的三氧化二铁和碱金属盐也可提高赤泥固硫反应速率常数和有效扩散系数,但温度过高会降低固体熔点而易导致烧结,削弱其固硫活性.  相似文献   

19.
闫彩辉  赵炜  刘丹  吴晓娜  杨华美  赵婧  陶鑫  盛晨 《化工进展》2012,31(1):57-61,82
采用微波辅助条件下热解稀硫酸预处理的麦秆制取生物油,产物采用分级萃取进行固液分离,依次分离出了环己烷萃取物、乙酸乙酯萃取物、甲醇萃取物和四氢呋喃萃取物,并用气相色谱/质谱联用仪(GC/MS)分析了各级萃取物。结果表明,本研究制取的生物油中化合物种类较少,有利于生物油中高附加值化学品的分离,其中5,6-二氢吡喃-2-酮在环己烷萃取物中的相对含量为45.0%,糠醛在生物油总产物中的相对含量为45.6%。此外,生物油中酸的相对含量为16.0%,表明该生物油含酸量高而不易于直接作为燃料油使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号